References
Abdullah, A. D., Gisen, J. I., Zaag, P. v. d., Savenije, H. H., Karim, U. F., Masih, I., & Popescu, I. (2016). Predicting the salt water intrusion in the Shatt al-Arab estuary using an analytical approach. Hydrology and earth system sciences, 20(10), 4031-4042. doi: 10.5194/hess-20-4031-2016
Al-Aesawi, Q., Al-Nasrawi, A. K., Jones, B. G., & Yang, S.-Q. (2021). Geomatic freshwater discharge estimations and their effect on saltwater intrusion in alluvial systems: a case study in Shatt Al-Arab estuary. Environmental Earth Sciences, 80, 1-15. doi: 10.1007/s12665-021-09945-4
Bricker, J. D., Okabe, I., & Nakayama, A. (2006). Behavior of a small pulsed river plume in a strong tidal cross-flow in the Akashi Strait. Environmental Fluid Mechanics, 6(3), 203-225. doi: 10.1007/s10652-006-9013-4
Chao, S.-Y. (1988). River-forced estuarine plumes. Journal of Physical oceanography, 18(1), 72-88. doi: 10.1175/1520-0485(1988)018<0072:RFEP>2.0.CO;2
Chao, S.-Y., & Boicourt, W. C. (1986). Onset of estuarine plumes. Journal of Physical oceanography, 16(12), 2137-2149. doi: 10.1175/1520-0485(1986)016<2137:OOEP>2.0.CO;2
Chen, C., Beardsley, R. C., & Cowles, G. (2006). An unstructured grid, finite-volume coastal ocean model: FVCOM user manual. SMAST/UMASSD. doi: 10.5670/oceanog.2006.92
Cheng, R. (2000). Defining hydrologic instrumentation for the 21st Century. search of techniques for monitoring river discharge. US Geol. Survey Remote-Sensing Workshop (Menlo Park, California, USA,
Collins, C., & Macdonald, H. S. (2025). Modelling the variability and dynamics of river plumes in Hawke’s Bay, Aotearoa New Zealand. Frontiers in Marine Science, 12, 1536550. doi: 10.3389/fmars.2025.1536550
Duenwald, M. C., Abdih, M. Y., Gerling, M. K., Stepanyan, V., Al-Hassan, A., Anderson, G., Baum, M. A., Saksonovs, M. S., Agoumi, L., & Chen, C. (2022). Feeling the Heat: Adapting to Climate Change in the Middle East and Central Asia. International Monetary Fund. doi: 10.5089/9781513591094.087
Duvvuri, B., Gehring, J., & Beighley, E. (2024). Methodological evaluation of river discharges derived from remote sensing and land surface models. Scientific Reports, 14(1), 25653. doi: 10.1038/s41598-024-75361-w
Eddin, M. H. S., Zahng, Y., Kollet, S., & Gall, J. (2025). RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting. arXiv preprint arXiv:2505.22535. doi: 10.48550/arXiv.2505.22535
Flint, A., Flint, L., Curtis, J., & Boesch, C. (2011). A Preliminary Water Balance Model for the Tigris and Euphrates River System. In: USGS.
Garvine, R. W. (1981). Frontal jump conditions for models of shallow, buoyant surface layer hydrodynamics. Tellus, 33(3), 301-312. doi: 10.3402/tellusa.v33i3.10717
Garvine, R. W. (1982). A steady state model for buoyant surface plume hydrodynamics in coastal waters. Tellus, 34(3), 293-306. doi: 10.3402/tellusa.v34i3.10813
Garvine, R. W. (1995). A dynamical system for classifying buoyant coastal discharges. Continental Shelf Research, 15(13), 1585-1596. doi: 10.1016/0278-4343(94)00065-U
Global Runoff Data Centre (GRDC). World Meteorological Organization WMO and Federal Institute of Hydrology (BfG ). https://grdc.bafg.de/data/data_portal/
Gonçalves, H., Teodoro, A. C., & Almeida, H. (2012). Identification, Characterization and Analysis of the Douro River Plume From MERIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(5). doi: 10.1109/JSTARS.2012.2199740
Jafar, A., Vahid, C., Maziar, K., & Abbas, E. (2014). Study of the Physical Oceanographic Properties of the Persian Gulf, Strait of Hormuz and Gulf of Oman Based on PG-GOOS CTD Measurements. Journal of the Persian Gulf, 5(18), 12.
https://www.researchgate.net/profile/Jafar-Azizpour/publication/285581886_Study_of_the_Physical_Oceanographic_Properties_of_the_Persian_Gulf_Strait_of_Hormuz_and_Gulf_of_Oman_Based_on_PG-GOOS_CTD_Measurements/links/568121d208ae1975838f62af/Study-of-the-Physical-Oceanographic-Properties-of-the-Persian-Gulf-Strait-of-Hormuz-and-Gulf-of-Oman-Based-on-PG-GOOS-CTD-Measurements.pdf. [In Persian]
Kamidis, Sylaios, & Tsihrintzis. (2015). Nestos River plume dynamics under variable physical forcing. Πανελλήνια και Διεθνή Γεωγραφικά Συνέδρια, Συλλογή Πρακτικών, 549-566. http://geolib.geo.auth.gr/index.php/pgc/article/view/10460/10208
Kämpf, J., & Sadrinasab, M. (2006). The circulation of the Persian Gulf: a numerical study. Ocean Science, 2(1), 27-41. doi: 10.5194/os-2-27-2006
Karami, N. (2019). The modality of climate change in the Middle East: drought or drying up? J Interrupted Stud 2 (1): 118–140. In.
Khorram, S. (1982). Remote sensing of salinity in the San Francisco Bay Delta. Remote Sensing of Environment, 12(1), 15-22. doi: 10.1016/0034-4257(82)90004-9
Klein, L., & Swift, C. (1977). An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Journal of Oceanic Engineering, 2(1), 104-111. doi: 10.1109/JOE.1977.1145319
Koblinsky, C., Hildebrand, P., LeVine, D., Pellerano, F., Chao, Y., Wilson, W., Yueh, S., & Lagerloef, G. (2003). Sea surface salinity from space: Science goals and measurement approach. Radio Science, 38(4). doi: 10.1029/2001RS002584
Kourafalou, V. H., Oey, L. Y., Wang, J. D., & Lee, T. N. (1996). The fate of river discharge on the continental shelf: 1. Modeling the river plume and the inner shelf coastal current. Journal of Geophysical Research: Oceans, 101(C2), 3415-3434. doi: 10.1029/95JC03024
Lagerloef, G. S., Swift, C. T., & Le Vine, D. M. (1995). Sea surface salinity: The next remote sensing challenge. Oceanography, 8(2), 44-50. doi: 10.5670/oceanog.1995.17
Legleiter, C. J., Grant, G., Bae, I., Fasth, B., Yager, E., White, D. C., Hempel, L., Harlan, M. E., Leonard, C., & Dudley, R. (2025). Remote sensing of river discharge based on critical flow theory. Geophysical Research Letters, 52(9), e2025GL114851. doi: 10.1029/2025GL114851
Liu, J. T., Chao, S.-Y., & Hsu, R. T. (1999). The influence of suspended sediments on the plume of a small mountainous river. Journal of Coastal Research, 1002-1010. https://www.jstor.org/stable/4299020
Ma, C., He, W., Zhang, G., Li, X., & Zhao, J. (2025). Spatiotemporal variations in Pearl River plume dispersion over the last decade based on VIIRS-derived sea surface salinity. Marine Pollution Bulletin, 218, 118179. doi: 10.1016/j.marpolbul.2025.118179
Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4), 851-875. doi: 10.1029/RG020i004p00851
Miller, J. L., Goodberlet, M. A., & Zaitzeff, J. B. (1998). Airborne salinity mapper makes debut in coastal zone. Eos, Transactions American Geophysical Union, 79(14), 173-177. doi: 10.1029/98EO00126
Osadchiev, A. (2015). A method for quantifying freshwater discharge rates from satellite observations and Lagrangian numerical modeling of river plumes. Environ. Res. Lett, 10. doi: 10.1088/1748-9326/10/8/085009
Ou, S., Zhang, H., Wang, D., & He, J. (2007). Horizontal characteristics of buoyant plume off the Pearl River Estuary during summer. Journal of Coastal Research, SI, 50, 652-657. https://www.jstor.org/stable/26481667
Reynolds, R. M. (1993). Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin, 27, 35-59. doi: 10.1016/0025-326X(93)90007-7
Robert Brakenridge, G., Cohen, S., Kettner, A. J., De Groeve, T., Nghiem, S. V., Syvitski, J. P. M., & Fekete, B. M. (2012). Calibration of satellite measurements of river discharge using a global hydrology model. Journal of Hydrology, 475, 123-136. doi: 10.1016/j.jhydrol.2012.09.035
Selch, D. (2012). Comparing salinity models in Whitewater Bay using remote sensing. FLORIDA ATLANTIC UNIVERSITY. https://search.proquest.com/openview/39474e9cd0d7ebba0cb8ee600e3427cf/1?pq-origsite=gscholar&cbl=18750
Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91(3), 99-164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Swift, C. T., & Mcintosh, R. E. (1983). Considerations for microwave remote sensing of ocean-surface salinity. IEEE Transactions on Geoscience and Remote Sensing(4), 480-491. doi: 10.1109/TGRS.1983.350511
Tarya, A., Van der Vegt, M., & Hoitink, A. (2015). Wind forcing controls on river plume spreading on a tropical continental shelf. Journal of Geophysical Research: Oceans, 120(1), 16-35. doi: 10.1002/2014JC010456
Tayfehrostami, A., Ardalan, A. A., & Pourmina, A. H. (2021). River discharge monitoring using satellite missions: Sentinel-1, Sentinel-2, and Sentinel-3 (Case study: The Karun River, Iran). Earth Observation and Geomatics Engineering, 5(2), 96-111. doi: 10.22059/eoge.2022.336941.1112. [In Persian]
Townend, J. (2013). Practical statistics for environmental and biological scientists. John Wiley & Sons. https://www.wiley.com/en-us/Practical+Statistics+for+Environmental+and+Biological+Scientists-p-9780471496656
UN-ESCWA, B. (2013). United Nations economic and social commission for western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe. Inventory of Shared Water Resources in Western Asia, Beirut. https://www.unescwa.org/sites/default/files/pubs/pdf/e_escwa_sdpd_13_inventory_e.pdf
Urquhart, E. A., Zaitchik, B. F., Hoffman, M. J., Guikema, S. D., & Geiger, E. F. (2012). Remotely sensed estimates of surface salinity in the Chesapeake Bay: A statistical approach. Remote Sensing of Environment, 123, 522-531. doi: 10.1016/j.rse.2012.04.008
Wang, Q., Guo, X., & Takeoka, H. (2008). Seasonal variations of the Yellow River plume in the Bohai Sea: A model study. Journal of Geophysical Research, 113(C8). doi: 10.1029/2007jc004555
Wiseman, W., & Garvine, R. (1995). Plumes and coastal currents near large river mouths. Estuaries, 18(3), 509-517. doi: 10.2307/1352368
Xing, J., & Davies, A. M. (1999). The effect of wind direction and mixing upon the spreading of a buoyant plume in a non-tidal regime. Continental Shelf Research, 19(11), 1437-1483. doi: 10.1016/S0278-4343(99)00025-4
Yankovsky, A. E., & Chapman, D. C. (1997). A simple theory for the fate of buoyant coastal discharges. Journal of Physical oceanography, 27(7), 1386-1401. doi: 10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2.