Predicting the electrical conductivity of water using the Hicking CEEMD-LSSVM optimization algorithm

Document Type : Research/Original/Regular Article

Authors

1 Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

2 Chaharmahal & Bakhtiari Water and Waste Water Company, Shahrekord, Iran

Abstract

Accurate prediction of electrical conductivity (EC) concentrations in river water is essential for effective water quality management and environmental protection. This study develops a novel hybrid model, named HOA-CEEMD-LSSVM, that integrates the hiking optimization algorithm (HOA), complementary ensemble empirical mode decomposition (CEEMD), and least square support vector machine (LSSVM) to forecast daily EC concentrations in the Aidoghmoush River, Iran. HOA simultaneously optimizes key parameters of CEEMD and LSSVM to enhance prediction accuracy. CEEMD decomposes complex time series into intrinsic mode functions (IMFs) with more predictable patterns, which serve as inputs to the LSSVM predictor. The model’s performance is evaluated through multiple metrics, demonstrating significant improvements over benchmark models in terms of R² and Kling-Gupta Efficiency (KGE). The proposed model enhances the R2 and KGE values of other prediction models by 1%-10 % and 3.17%-17%, respectively. Our findings show that the HAO-CEEMD-LSSVM model can precisely forecast EC concentration. This approach provides a robust framework for capturing the nonlinear, nonstationary characteristics of EC time series data. The model is applicable in water resource planning, pollution control, and river ecosystem management. While showing high forecasting accuracy, its computational complexity and black-box nature present limitations. Future work should explore parallel computing and explainable artificial intelligence techniques to enhance efficiency and interpretability.

Keywords

Main Subjects


References
Abdel-salam, M., Alomari, S. A., Almomani, M. H., Hu, G., Lee, S., Saleem, K., Smerat, A., & Abualigah, L. (2025). Quadruple strategy-driven hiking optimization algorithm for low and high-dimensional feature selection and real-world skin cancer classification. Knowledge-Based Systems, 315, 113286. doi: 10.1016/j.knosys.2025.113286
Ahmadianfar, I., Jamei, M., & Chu, X. (2020). A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water. Journal of Contaminant Hydrology. doi: 10.1016/j.jconhyd.2020.103641
Ahmadianfar, I., Shirvani-Hosseini, S., He, J., Samadi-Koucheksaraee, A., & Yaseen, Z. M. (2022). An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Scientific Reports. doi: 10.1038/s41598-022-08875-w
Aldrees, A., Awan, H. H., Javed, M. F., & Mohamed, A. M. (2022). Prediction of water quality indexes with ensemble learners: Bagging and boosting. Process Safety and Environmental Protection. doi: 10.1016/j.psep.2022.10.005
Alsaedi, A. W. M., Al-Hilphy, A. R., Al-Mousawi, A. J., & Gavahian, M. (2024). Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing. Processes, 12(11), 2507. doi: 10.3390/pr12112507
Ali Khan, M., Izhar Shah, M., Faisal Javed, M., Ijaz Khan, M., Rasheed, S., El-Shorbagy, M. A., Roshdy El-Zahar, E., & Malik, M. Y. (2022). Application of random forest for modelling of surface water salinity. Ain Shams Engineering Journal. doi: 10.1016/j.asej.2021.11.004
Chia, S. L., Chia, M. Y., Koo, C. H., & Huang, Y. F. (2022). Integration of advanced optimization algorithms into least-square support vector machine (LSSVM) for water quality index prediction. Water Supply. doi: 10.2166/ws.2021.303
Dulger Altıner, D., Yıkmış, S., Şimşek, M. A., Türkol, M., Tokatlı Demirok, N., & Celik, G. (2024). Impact of thermosonication treatment on parsley juice: particle swarm algorithm (PSO), multiple linear regression (MLR), and response surface methodology (RSM). ACS omega, 9(27), 29585-29597. doi: 10.1021/acsomega.4c02749
Ehteram, M., & Soltani-Gerdefaramarzi, S. (2025). Advanced hybrid frameworks for water quality index prediction. Ain Shams Engineering Journal, 16(8), 103478. doi: 10.1016/j.asej.2025.103478
Ekemen Keskin, T., Özler, E., Şander, E., Düğenci, M., & Ahmed, M. Y. (2020). Prediction of electrical conductivity using ANN and MLR: a case study from Turkey. Acta Geophysica. doi: 10.1007/s11600-020-00424-1
Ghanbari-Adivi, E., Ehteram, M. CEEMDAN-BILSTM-ANN and SVM Models: Two Robust Predictive Models for Predicting River flow. Water Resour Manage 39, 3235–3271 (2025). doi: 10.1007/s11269-025-04105-w
Jamei, M., Ali, M., Karimi, B., Karbasi, M., Farooque, A. A., & Yaseen, Z. M. (2023). Surface water electrical conductivity and bicarbonate ion determination using a smart hybridization of optimal Boruta package with Elman recurrent neural network. Process Safety and Environmental Protection, 174, 115-134. doi: 10.1016/j.psep.2023.03.062
Jamshidzadeh, Z., Latif, S. D., Ehteram, M., Sheikh Khozani, Z., Ahmed, A. N., Sherif, M., & El-Shafie, A. (2024). An advanced hybrid deep learning model for predicting total dissolved solids and electrical conductivity (EC) in coastal aquifers. Environmental Sciences Europe. doi: 10.1186/s12302-024-00850-8
Kadkhodazadeh, M., & Farzin, S. (2021). A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters. Water Resources Management. doi: 10.1007/s11269-021-02913-4
Karbasi, M., Ali, M., Bateni, S. M., Jun, C., Jamei, M., Farooque, A. A., & Yaseen, Z. M. (2024). Multi-step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model enhanced by Boruta-XGBoost feature selection algorithm. Scientific reports, 14(1), 15051. doi: 10.1038/s41598-024-65837-0
Khatti, J., Khanmohammadi, M., & Fissha, Y. (2024). Prediction of time-dependent bearing capacity of concrete pile in cohesive soil using optimized relevance vector machine and long short-term memory models. Scientific Reports, 14(1), 32047. doi: 10.1038/s41598-024-83784-8
Kumar, D., Singh, V. K., Abed, S. A., Tripathi, V. K., Gupta, S., Al-Ansari, N., Vishwakarma, D. K., Dewidar, A. Z., Al‑Othman, A. A., & Mattar, M. A. (2023). Multi-ahead electrical conductivity forecasting of surface water based on machine learning algorithms. Applied Water Science. doi: 10.1007/s13201-023-02005-1
Li, H., Li, X., Yang, Z., Liu, Z., Bu, J., & Wang, Y. (2024). Loaded coal-rock temperature denoising algorithm based on CEEMD and adaptive NIWT with NIWOA. Measurement, 236, 115176. doi: 10.1016/j.measurement.2024.115176
Mattas, C., Dimitraki, L., Georgiou, P., & Venetsanou, P. (2021). Use of factor analysis (Fa), artificial neural networks (anns) and multiple linear regression (mlr) for electrical conductivity prediction in aquifers in the gallikos river basin, Northern Greece. Hydrology. doi: 10.3390/hydrology8030127
Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information, 15(9), 517. doi: 10.3390/info15090517
Muhammad, A. U., Djigal, H., Muazu, T., Adam, J. M., Ba, A. F., Dabai, U. S., Tijjani, S., Yahaya, M. S., Ashiru, A., Kumshe, U. M. M., Aliyu, S., & Richard, F. A. (2023). An autoencoder-based stacked LSTM transfer learning model for EC forecasting. Earth Science Informatics. doi: 10.1007/s12145-023-01096-3
Nakhaei-Kohani, R., Ali Madani, S., Mousavi, S. P., Atashrouz, S., Abedi, A., Hemmati-Sarapardeh, A., & Mohaddespour, A. (2022). Machine learning assisted Structure-based models for predicting electrical conductivity of ionic liquids. Journal of Molecular Liquids. doi: 10.1016/j.molliq.2022.119509
Özcan, A. R., Mehta, P., Sait, S. M., Gürses, D., & Yildiz, A. R. (2025). A new neural network–assisted hybrid chaotic hiking optimization algorithm for optimal design of engineering components. Materials Testing, (0). doi: 10.1515/mt-2024-0519
Oladejo, S. O., Ekwe, S. O., & Mirjalili, S. (2024). The Hiking Optimization Algorithm: A novel human-based metaheuristic approach. Knowledge-Based Systems, 296, 111880. doi: 10.1016/j.knosys.2024.111880
Pashaei, E., Pashaei, E., & Mirjalili, S. (2025). Binary hiking optimization for gene selection: Insights from HNSCC RNA-Seq data. Expert Systems with Applications, 268, 126404. doi: 10.1016/j.eswa.2025.126404
Reza, A. F., Singh, R., Verma, R. K., Singh, A., Ahn, Y. H., & Ray, S. S. (2024). An integral and multidimensional review on multilayer perceptron as an emerging tool in the field of water treatment and desalination processes. Desalination, 117849. doi: 10.1016/j.desal.2024.117849
Sağ, T. (2024, September). Binary Hiking Optimization Algorithm. In International Conference on Cellular Automata for Research and Industry (pp. 231-242). Cham: Springer Nature Switzerland. doi: 10.1007/978-3-031-71552-5_19
Shah, M. I., Javed, M. F., & Abunama, T. (2021). Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques. Environmental Science and Pollution Research. doi: 10.1007/s11356-020-11490-9.
Shin, J., Yoon, S., Park, N. S., & Kim, Y. (2025). Development of Water Quality Prediction Model Using LTSF-Linear and Complete Ensemble Empirical Mode Decomposition. Desalination and Water Treatment, 101254. doi: 10.1016/j.dwt.2025.101254
Song, C., Yao, L., Hua, C., & Ni, Q. (2021). A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environmental Monitoring and Assessment. doi: 10.1007/s10661-021-09127-6
Talebzadeh, H., Talebzadeh, M., Satarpour, M., Jalali, F., Farhadi, B., & Vahdatpour, M. S. (2024). Enhancing breast cancer diagnosis accuracy through genetic algorithm-optimized multilayer perceptron. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(4), 4433-4449. doi: 10.1007/s41939-024-00487-3
Wu, K., Guo, Y., Wang, K., & Chen, Z. (2025). Low-carbon economic optimization for flexible DC distribution networks based on the hiking optimization algorithm. Energy Informatics, 8(1), 44. doi: 10.1186/s42162-025-00486-9
Xu, D. Mei, Li, Z., & Wang, W. Chuan. (2024). An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy. Journal of Hydrology. doi: 10.1016/j.jhydrol.2023.130558
Yahia Ahmed Abuker, Y., Liu, Z., & Mao, L. (2025). Water Management Fault Diagnosis of Polymer Electrolyte Membrane Fuel Cells Based on Complementary Ensemble Empirical Mode Decomposition and Sensitivity Analysis. Journal of Energy Engineering, 151(3), 05025001. doi: 10.1061/JLEED9.EYENG-5508
Zhang, X., Wu, X., He, S., & Zhao, D. (2021). Precipitation forecast based on CEEMD–LSTM coupled model. Water Supply. doi: 10.2166/ws.2021.237
Zhou, M., Zhang, Y., Wang, J., Shi, Y., & Puig, V. (2022). Water Quality Indicator Interval Prediction in Wastewater Treatment Process Based on the Improved BES-LSSVM Algorithm. Sensors. doi: 10.3390/s22020422
Zhao, M., & Zhou, X. (2024). Multi-Step short-term wind power prediction model based on CEEMD and improved snake optimization algorithm. IEEE Access. doi: 10.1109/ACCESS.2024.3385643
Zhou, M., Yu, J., Wang, M., Quan, W., & Bian, C. (2024). Research on the combined forecasting model of cooling load based on IVMD-WOA-LSSVM. Energy and Buildings, 317, 114339. doi: 10.1016/j.enbuild.2024.114339