References
Gong, A. M. (2016). Using automatic calibration method for optimizing the performance of Pedotransfer functions of saturated hydraulic conductivity. Ain Shams Engineering Journal,
7(2), 653-662.
doi:
10.1016/j.asej.2015.05.012
Ahmadi, F., Mehdizadeh, S., Mohammadi, B., Pham, Q. B., Doan, T. N. C., Vo, N. D. (2021). Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 244, 106622.
doi: 10.1016/j.agwat.2020.106622
Ahmadpari, H., Khaustov, V. (2025). Analyzing meteorological and hydrological droughts in the Darreh Dozdan River basin through drought indices. Environment and Water Engineering, 11(2), 174-184. doi: 10.22034/ewe.2025.506959.2004
Berti, A., Tardivo, G., Chiaudani, A., Rech, F., Borin, M. (2014). Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management, 140, 20-5. doi: 10.1016/j.agwat.2014.03.015
Butchart-Kuhlmann, D., Kralisch, S., Fleischer, M., Meinhardt, M., Brenning, A. (2018). Multicriteria decision analysis framework for hydrological decision support using environmental flow components. Ecological Indicators, 93, 470-480.
doi:10.1016/j.ecolind.2018.04.057
Cai, W., Wen, X., Li, C., Shao, J., Xu, J. (2023). Predicting the energy consumption in buildings using the optimized support vector regression model. Energy, 273, 127188.
doi: 10.1016/j.energy.2023.127188
Chauhan, S., Shrivastava, R. K. (2009). Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resources Management, 23(5), 825-837.
doi: 10.1007/s11269-008-9301-5
De Martonne, E. (1925). TraitéGéographie. Physique: 3 tomes. Max leclcrc and H. Bourrclier, proprietors of LibrairicArmard Colin: Paris.
Dooley, A.E., Smeaton, D. C., Sheath, G. W., Ledgard, S. F. (2009). Application of multiple criteria decision analysis in the New Zealand agricultural industry. The Journal of Multi-Criteria Decision Analysis, 16(1‐2), 39-53. doi: 10.1002/mcda.437
Dwivedi, P. P., Sharma, D. K. (2022a). Application of Shannon Entropy and COCOSO techniques to analyze performance of sustainable development goals: The case of the Indian Union Territories. Results in Engineering, 14, 100416.
doi: 10.1016/j.rineng.2022.100416
Dwivedi, P. P., Sharma, D. K. (2022b). Application of Shannon entropy and CoCoSo methods in selection of the most appropriate engineering sustainability components. Cleaner Materials, 5, 100118.
doi: 10.1016/j.clema.2022.100118
Ellenburg, W. L., Cruise, J., Singh, V. P. (2017). The Role of Evapotranspiration in Streamflow Modeling-an Analysis Using Entropy Theory. In AGU Fall Meeting Abstracts 2017 Dec (Vol. 2017, pp. H23C-1677).
Fu, T., Li, X., Jia, R., Feng, L. (2021). A novel integrated method based on a machine learning model for estimating evapotranspiration in dryland. Journal of Hydrology, 603, 126881.
doi: 10.1016/j.jhydrol.2021.126881
Ghabaei Sough, M., Mosaedi, A., Hesam, M., Hezarjaribi, A. (2010). Evaluation Effect of Input Parameters Preprocessing in Artificial Neural Networks (Anns) by Using Stepwise Regression and Gamma Test Techniques for Fast Estimation of Daily Evapotranspiration. Water and Soil, 24(3), 610-624. doi: 10.22067/jsw.v0i0.3631
Gong, D., Hao, W., Gao, L., Feng, Y., Cui, N. (2021). Extreme learning machine for reference crop evapotranspiration estimation: Model optimization and spatiotemporal assessment across different climates in China. Computers and Electronics in Agriculture, 187, 106294.
doi: 10.1016/j.compag.2021.106294
Haoyuan, S., Yizhong, M., Chenglong, L., Jian, Z., Lijun, L. (2023). Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction. Reliability Engineering and System Safety, 229, 108842.
doi: 10.1016/j.ress.2022.108842
Hu, X., Shi, L., Lian, X., Bian, J. (2023). Parameter variability across different timescales in the energy balance-based model and its effect on evapotranspiration estimation. Science of the Total Environment, 871, 161919. doi: 10.1016/j.scitotenv.2023.161919.
Jiang, G. J., Chen, H. X., Sun, H. H., Yazdi, M., Nedjati, A., Adesina, K. A. (2021). An improved multi-criteria emergency decision-making method in environmental disasters. Soft Computing, 25(15), 10351-10379.
doi: 10.1007/s00500-021-05826-x
Kim, H. J., Chandrasekara, S., Kwon, H. H., Lima, C., Kim, T. W. (2023). A novel multi-scale parameter estimation approach to the Hargreaves-SamaniEq. for estimation of Penman-Monteith reference evapotranspiration. Agricultural Water Management, 275, 108038.
doi: 10.1016/j.agwat.2022.108038
Malek, M. H., Berger, D. E., Coburn, J. W. (2007). On the inappropriateness of stepwise regression analysis for model building and testing. European Journal of Applied Physiology, 101, 263-264.
doi: 10.1007/s00421-007-0485-9
Maroufpoor, S., Bozorg-Haddad, O., Maroufpoor, E. (2020). Reference evapotranspiration estimating based on optimal input combination and hybrid artificial intelligent model: Hybridization of artificial neural network with grey wolf optimizer algorithm. Journal of Hydrology, 588, 125060. doi: 10.1016/j.jhydrol.2020.125060
Musbah, H., Ali, G., Aly, H.H., Little, T. A. (2022). Energy management using multi-criteria decision making and machine learning classification algorithms for intelligent system. Electric Power Systems Research, 203, 107645.
doi: 10.1016/j.epsr.2021.107645
Nieminen, P. (2022). Application of standardized regression coefficient in meta-analysis. BioMedInformatics, 2(3), 434-458. doi:10.3390/biomedinformatics2030028
Raffinetti, E., Aimar, F. (2019). MDCgo takes up the association/correlation challenge for grouped ordinal data. AStA Advances in Statistical Analysis, 103(4), 527-561. doi: 10.1007/s10182-018-00341-1
Rezaei, I., Amirshahi, S. H., Mahbadi, A. A. (2023). Utilizing support vector and kernel ridge regression methods in spectral reconstruction. Results in Optics, 11, 100405.
doi: 10.1016/j.rio.2023.100405
Saroughi, M., Mirzania, E., Achite, M., Katipoğlu, O. M., Al-Ansari, N., Vishwakarma, D. K., Chung, I. M., Alreshidi, M. A., Yadav, K. K. (2024). Evaluate effect of 126 pre-processing methods on various artificial intelligence models accuracy versus normal mode to predict groundwater level (case study: Hamedan-Bahar Plain, Iran). Heliyon, 10(7).
doi: 10.1016/j.heliyon.2024.e29006
Shternshis, A., Mazzarisi, P., Marmi, S. (2022). Measuring market efficiency: The Shannon entropy of high-frequency financial time series. Chaos, Solitons & Fractals, 162, 112403.
doi: 10.1016/j.chaos.2022.112403
Shu, Z., Zhou, Y., Zhang, J., Jin, J., Wang, L., Cui, N., Wang, G., Zhang, J., Wu, H., Wu, Z., Chen, X. (2022). Parameter regionalization based on machine learning optimizes the estimation of reference evapotranspiration in data deficient area. Science of the Total Environment, 844, 157034.
doi: 10.1016/j.scitotenv.2022.157034
Su, Q., Singh, V. P., Karthikeyan, R. (2022). Improved reference evapotranspiration methods for regional irrigation water demand estimation. Agricultural Water Management, 274, 107979. doi:
10.1016/j.agwat.2022.107979
Tabar, H., Hosseinzadeh Talaee, P. (2013). Multilayer perceptron for reference evapotranspiration estimation in a semiarid region. Neural Computing & Applications, 23, 341-348.
doi: 10.1007/s00521-012-0904-7
Yadeta, D., Kebede, A., Tessema, N. (2020). Potential evapotranspiration models evaluation, modelling, and projection under climate scenarios, Kesem sub-basin, Awash River basin, Ethiopia. Modeling Earth System and Environment, 6, 2165-2176.
doi: 10.1007/s40808-020-00831-9
Yao, Y., Mallik, A. U. (2022). Estimation of actual evapotranspiration and water stress in the Lijiang River Basin, China using a modified Operational Simplified Surface Energy Balance (SSEBop) model. Journal of Hydro-environment Research, 41, 1-11.
doi: 10.1016/j.jher.2022.01.003
Zhu, N., Wang, J., Luo, D. (2024). Unveiling evapotranspiration patterns and energy balance in a subalpine forest of the Qinghai–Tibet Plateau: observations and analysis from an eddy covariance system. Journal of Forestry Research, 35, 53. doi: 10.1007/s11676-024-01708-8