Analysis of climate trends and change point detection in Upper Middle Olifants catchment, South Africa

نوع مقاله : Special issue on "Climate Change and Effects on Water and Soil"

نویسندگان

Department of Civil Engineering Sciences, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa

10.22098/mmws.2025.18183.1656

چکیده

Climate variability poses a pressing shift to the hydrological cycle and diminishing water resource availability. This shift is a prevalent challenge to day-to-day activities in the Olifants River, South Africa. This study assessed rainfall, minimum and maximum temperature variability, trend analysis, and change point detection in the Olifants River using numerous statistical analysis methods, such as coefficient of variation, Kurtosis, skewness, Pettitt, Buishand, von Neumann, Standard normal homogeneity test (SNHT), Mann-Kendall, and Sen's slope tests for the period of 1988 to 2014. The result showed that annual rainfall in most stations had moderate variation, limited stations were negatively skewed, and not normally distributed. Most of the stations, such as X1E003, B5E004, and B1E003, show less variability (CV < 20), while the rest of the stations show moderate variation ranges (20 < CV < 30) for rainfall datasets. The results of kurtosis and skewness ranged from -0.41 to 1.10 and -0.12 to 0.46 for rainfall; -0.03 to 0.92 and -0.61 to -0.17 for maximum temperature; and 0.24 to 1.61 and -0.18 to 0.14 for minimum temperature, respectively. Furthermore, the majority of stations were negatively skewed for annual maximum and minimum temperatures. Unexpectedly, the homogeneity tests for annual rainfall and maximum temperature depict favorable results, while a few stations were found to be non-homogeneous for minimum temperature. Specifically, the trend analysis indicators such as Kendall's tau, S, p-value and Sen’s slope were results ranges from -0.03 to 0.15, -11 to 53, 0.28 to 1.0, and -1.95 to 4.98 for rainfall; 0.08 to 0.15, 29 to 51, 0.30 to 0.56, and 0.009 to 0.025 for maximum temperature; and 0.13 to 0.24, 45 to 85, 0.08 to 0.36, 0.01 to 0.014 for minimum temperature, respectively. The trend analysis result revealed that the highest percentage of stations were in increasing trend, while the magnitude varies slightly for annual rainfall, maximum, and minimum temperatures. Sustainable and innovative climate variability mitigation measures must be initiated to reduce the effects of variability in agricultural productivity and environmental changes. Future researchers can investigate the effects of natural and anthropogenic activities on water resources and their implications on water availability.

کلیدواژه‌ها

موضوعات


References
Abera, E.A., Abegaz, W.B., 2020. Seasonal and Annual Rainfall Trend Detection in Eastern Amhara, Ethiopia. Journal of Climatol Weather & Forecasting, 8(3), 1–10. doi: 10.35248/2332-2594.2020.8.264
Abungba, J.A., Khare, D., Pingale, S.M., Adjei, K.A., Gyamfi, C., Odai, S.N., 2020. Assessment of Hydro-climatic Trends and Variability over the Black Volta Basin in Ghana. Earth Systems and Environment, 4(4), 739–755. doi: 10.1007/s41748-020-00171-9
Adane, G.B., Hirpa, B.A., Song, C., Lee, W.K., 2020. Rainfall characterization and trend analysis of wet spell length across varied landscapes of the Upper Awash River Basin, Ethiopia. Sustainability, 12(9221). doi: 10.3390/su12219221
Adeola, A., Ncongwane, K., Abiodun, G., Makgoale, T., Rautenbach, H., Botai, J., Adisa, O., Botai, C., 2019. Rainfall trends and malaria occurrences in Limpopo province, South Africa. International Journal of Environmental Research and Public Health, 16(24). doi: 10.3390/ijerph16245156
Akbar, H., Gheewala, S.H., 2020. Changes in hydroclimatic trends in the Kunhar River Watershed Changes in hydroclimatic trends in the Kunhar River Watershed. Journal of Sustainable Energy & Environment, 11(June), 31–41. doi: 10.13140/RG.2.2.12517.42725
Alashan, S., 2020. Combination of modified Mann‐Kendall method and Şen innovative trend analysis. Engineering Reports, 2(3), 1–13. doi: 10.1002/eng2.12131
Ali, R., Kuriqi, A., Abubaker, S., Kisi, O., 2019. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water (Switzerland), 11(9). doi: 10.3390/w11091855
Animashaun, I. M., Oguntunde, P.G., Akinwumiju, A.S., Olubanjo, O.O., 2020. Rainfall Analysis over the Niger Central Hydrological Area, Nigeria: Variability, Trend, and Change point detection. Scientific African, 8(e00419). doi: 10.1016/j.sciaf.2020.e00419
Aredo, M.R., Hatiye, S.D., Pingale, S.M., 2021a. Impact of land use/land cover change on stream flow in the Shaya catchment of Ethiopia using the MIKE SHE model. Arabian Journal of Geosciences, 14(114). doi: 10.1007/s12517-021-06447-2
Aredo, M.R., Hatiye, S.D., Pingale, S.M., 2021b. Modeling the rainfall-runoff using MIKE 11 NAM model in Shaya catchment, Ethiopia. Modeling Earth Systems and Environment, 7, 2545–2551. doi: 10.1007/s40808-020-01054-8
Aredo, M.R., Lohani, T.K., Mohammed, A.K., 2023a. Assessment of river response to water abstractions in the Weyib Watershed, Ethiopia. International Journal of River Basin Management, 23(1), 93–104. doi: 10.1080/15715124.2023.2248488
Aredo, M.R., Lohani, T.K., Mohammed, A.K., 2023b. Numerical groundwater modelling under changing water abstraction in Weyib watershed, Ethiopia. Cogent Engineering, 10(2). doi: 10.1080/23311916.2023.2283297
Aredo, M.R., Lohani, T.K., Mohammed, A.K., 2024a. Groundwater recharge estimation using WetSpass-M and MTBS leveraging from HydroOffice and WHAT tools for baseflow in Weyib watershed, Ethiopia. Environmental Monitoring and Assessment, 196(6). doi: 10.1007/s10661-024-12643-w
Aredo, M.R., Lohani, T.K., Mohammed, A.K., 2024b. Revisiting the global weights of the integrated watershed health assessment framework and Weyib watershed health analysis : Ethiopia’s policy prospects. World Water Policy, 10(3), 1–31. doi: 10.1002/wwp2.12205
Asfaw, A., Simane, B., Hassen, A., Bantider, A., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. doi: 10.1016/j.wace.2017.12.002
Ayivi, F., Jha, M.K., 2018. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT. International Soil and Water Conservation Research, 6, 203–213. doi: 10.1016/j.iswcr.2018.03.007
Bai, P., Liu, X., Liang, K., Liu, C., 2015. Comparison of performance of twelve monthly water balance models in different climatic catchments of China. Journal of Hydrology, 529, 1030–1040. doi: 10.1016/j.jhydrol.2015.09.015
Bailey, R. T., Wible, T. C., Arabi, M., Records, R.M., Ditty, J., 2016. Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes, 30(23), 4420–4433. doi: 10.1002/hyp.10933
Banda, V.D., Dzwairo, R.B., Singh, S.K.,  Kanyerere, T., 2021. Trend analysis of selected hydro-meteorological variables for the Rietspruit sub-basin, South Africa. Journal of Water and Climate Change, 12(7), 3099–3123. doi: 10.2166/wcc.2021.260
Bartels, R.J., Black, A.W., Keim, B.D., 2019. Trends in precipitation days in the United States. International Journal of Climatology, 40(2), 1038–1048. doi: 10.1002/joc.6254
Bekele, M., Mulugeta, T., Belete, D., Dananto, M., 2023. Trends in climatic and hydrological parameters in the Ajora ‑ Woybo watershed, Omo ‑ Gibe River basin , Ethiopia. SN Applied Sciences, 5(45). doi: 10.1007/s42452-022-05270-y
Belihu, M., Abate, B., Tekleab, S., Bewket, W., 2018. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia. Physics and Chemistry of the Earth, 104, 84–101. doi: 10.1016/j.pce.2017.10.002
Buishand, T. A., 1982. Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(58), 11–27. doi: 10.1016/0022-1694(82)90066-X
Bushira, K.M., Hernandez, J.R., 2019. MODFLOW-Farm Process Modeling for Determining Effects of Agricultural Activities on Groundwater Levels and Groundwater Recharge. Journal of Soil and Groundwater Environment, 24(5), 17–30. doi: 10.7857/JSGE.2019.24.5.017
Cherinet, A.A., Yan, D., Wang, H., Song, X., Qin, T., Kassa, M. T., Girma, A., Dorjsuren, B., Gedefaw, M., Wang, H., Yadamjav, O., 2019. Climate Trends of Temperature, Precipitation and River Discharge in the Abbay River Basin in Ethiopia. Journal of Water Resource and Protection, 11(10), 1292–1311. doi: 10.4236/jwarp.2019.1110075
Daba, M.H., Ayele, G.T., You, S., 2020. Long-Term Homogeneity and Trends of Hydroclimatic Variables in Upper Awash River Basin, Ethiopia. Advances in Meteorology, 2020(1), 8861959. doi: 10.1155/2020/8861959
Erena, S. H., Worku, H., 2019. Urban flood vulnerability assessments: the case of Dire Dawa city, Ethiopia. Natural Hazards, 97(2), 495–516. doi: 10.1007/s11069-019-03654-9
Fentaw, F., Melesse, A.M., Hailu, D., Nigussie, A., 2019. Precipitation and streamflow variability in Tekeze River basin, Ethiopia. In Extreme hydrology and climate variability (pp. 103–121). Elsevier Inc. doi: 10.1016/B978-0-12-815998-9.00010-5
Gao, F., Wang, Y., Chen, X., Yang, W., 2020. Trend analysis of rainfall time series in Shanxi province, Northern China (1957-2019). Water (Switzerland), 12(9), 1–22. doi: 10.3390/W12092335
Gebre, S.L., Getahun, Y.S., 2016. Analysis of Climate Variability and Drought Frequency Events on Limpopo River Basin, South Africa. Hydrology Current Research, 7(3). doi: 10.4172/2157-7587.1000249
Gedefaw, M., Yan, D., Wang, H., Qin, T., Girma, A., Abiyu, A., Batsuren, D., 2018. Innovative trend analysis of annual and seasonal rainfall variability in Amhara Regional State, Ethiopia. Atmosphere, 9(326). doi: 10.3390/atmos9090326
Gonfa, K.H., Alamirew, T., Melesse, A.M., 2022. Hydro-Climate Variability and Trend Analysis in the Jemma. Hydrology, 9(12), 209. doi: 10.3390/hydrology9120209
Gulakhmadov, A., Chen, X., Gulahmadov, N., Liu, T., Davlyatov, R., Sharofiddinov, S., Gulakhmadov, M., 2020. Long-term hydro-climatic trends in the mountainous Kofarnihon river Basin in Central Asia. Water, 12(8). doi: 10.3390/W12082140
Gurara, M.A., Tolche, A.D., Jilo, N.B., Kassa, A.K., 2022). Annual and seasonal rainfall trend analysis using gridded dataset in the Wabe Shebele River Basin, Ethiopia. Theoretical and Applied Climatology, 150, 263–281. doi: 10.1007/s00704-022-04164-8
Hadi, S.J.,  Tombul, M., 2018. Comparison of Spatial Interpolation Methods of Precipitation and Temperature Using Multiple Integration Periods. Journal of the Indian Society of Remote Sensing, 46(7), 1187–1199. doi: 10.1007/s12524-018-0783-1
Harmse, C.J., Du Toit, J.C.O., Swanepoel, A., Gerber, H.J., 2021. Trend analysis of long-term rainfall data in the Upper Karoo of South Africa. Transactions of the Royal Society of South Africa, 76(1), 1–12. doi: 10.1080/0035919X.2020.1834467
Hussain, A., Cao, J., Hussain, I., Begum, S., Akhtar, M., Wu, X., Guan, Y., Zhou, J., 2021. Observed Trends and Variability of Temperature and Precipitation and Their Global Teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya. Atmosphere, 12(973). doi: 10.3390/atmos12080973
Igibah, C.E., Tanko, J.A., 2019. Assessment of urban groundwater quality using Piper trilinear and multivariate techniques: a case study in the Abuja, North-central, Nigeria. Environmental Systems Research, 8(14). doi: 10.1186/s40068-019-0140-6
Jayasekara, S., Abeysingha, N., Meegastenna, T., 2020. Streamflow trends of Kelani river basin in Sri Lanka (1983-2013). Journal of the National Science Foundation of Sri Lanka, 48(4), 449. doi: 10.4038/jnsfsr.v48i4.9440
Jung, H.C., Getirana, A., Policelli, F., Mcnally, A., Arsenault, R., Kumar, S., Tadesse, T., & Peters-lidard, C.D., 2017. Upper Blue Nile Basin Water Budget from a Multi-Model Perspective. Journal of Hydrology, 555, 535–546. doi: 10.1016/j.jhydrol.2017.10.040
Kazemzadeh, M., Malekian, A., 2018. Homogeneity analysis of streamflow records in arid and semi-arid regions of northwestern Iran. Journal of Arid Land, 10, 493–506 (2018). doi: 10.1007/s40333-018-0064-4
Kendall, M.G., 1975. Rank Correlation Methods. 4th Edition, Charles Griffin, London.
Kruger, A.C., Shongwe, S., 2004. Temperature trends in South Africa: 1960-2003. International Journal of Climatology, 24(15), 1929–1945. doi: 10.1002/joc.1096
Loliyana, V.D., Patel, P.L., 2018. Performance evaluation and parameters sensitivity of a distributed hydrological model for a semi-arid catchment in India. Journal of Earth System Science, 127(117). doi: 10.1007/s12040-018-1021-5
Mahlalela, P.T., Blamey, R.C., Hart, N.C.G., Reason, C.J.C., 2020. Drought in the Eastern Cape region of South Africa and trends in rainfall characteristics. Climate Dynamics, 55(9–10), 2743–2759. doi: 10.1007/s00382-020-05413-0
Mahmood, R., Jia, S., 2019. Assessment of hydro-climatic trends and causes of dramatically declining stream flow to Lake Chad, Africa, using a hydrological approach. Science of the Total Environment, 675, 122–140. doi: 10.1016/j.scitotenv.2019.04.219
Makungo, R., Odiyo, J.O., Ndiritu, J.G., Mwaka, B., 2010. Rainfall-runoff modelling approach for ungauged catchments: A case study of Nzhelele River sub-quaternary catchment. Physics and Chemistry of the Earth, 35, 596–607. doi: 10.1016/j.pce.2010.08.001
Maluleke, P., Moeletsi, M.E., Tsubo, M., 2024. Analysis of Climate Variability and Its Implications on Rangelands in the Limpopo Province. Climate, 12(2). doi: 10.3390/cli12010002
Mann, H.B., 1945. Nonparametric Tests Against Trend. Econometrica, 13(3), 245–259. doi: 10.2307/1907187
Masingi, V.N., Maposa, D., 2021. Modelling long-term monthly rainfall variability in selected provinces of South Africa: Trend and extreme value analysis approaches. Hydrology, 8(70), 1–27. doi: 10.3390/hydrology8020070
Mosase, E., Ahiablame, L., 2018. Rainfall and temperature in the Limpopo River Basin, Southern Africa: Means, variations, and trends from 1979 to 2013. Water (Switzerland), 10(4). doi: 10.3390/w10040364
Mulugeta, S., Fedler, C., Ayana, M., 2019. Analysis of long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Water (Switzerland), 11(7). doi: 10.3390/w11071498
Mupangwa, W., Makanza, R., Chipindu, L., Moeletsi, M., Mkuhlani, S., Liben, F., Nyagumbo, I., Mutenje, M., 2021. Temporal rainfall trend analysis in different agro-ecological regions of southern Africa. Water SA, 47(4), 466–479. doi: 10.17159/WSA/2021.V47.I4.3844
Nannawo, A.S., Lohani, T.K., Eshete, A.A., Ayana, M.T., 2022. Evaluating the dynamics of hydroclimate and streamflow for data ‑ scarce areas using MIKE11 ‑ NAM model in Bilate river basin , Ethiopia. Modeling Earth Systems and Environment, 8(4), 4563–4578. doi: 10.1007/s40808-022-01455-x
Nasir, J., Assefa, E., Zeleke, T., Gidey, E., 2021. Meteorological Drought in Northwestern Escarpment of Ethiopian Rift Valley: detection seasonal and spatial trends. Environmental Systems Research, 10(1). doi: 10.1186/s40068-021-00219-3
Ndlovu, M., Clulow, A.D., Savage, M.J., Nhamo, L., Magidi, J., Mabhaudhi, T., 2021. An assessment of the impacts of climate variability and change in Kwazulu-Natal province, South Africa. Atmosphere, 12(4). doi: 10.3390/atmos1204042
Nkhonjera, G. K., 2017. Understanding the impact of climate change on the dwindling water resources of South Africa, focusing mainly on Olifants River basin: A review. Environmental Science and Policy, 71, 19–29. doi: 10.1016/j.envsci.2017.02.004
Nkhonjera, G.K., Dinka, M.O., Woyessa, Y.E., 2021. Assessment of localized seasonal precipitation variability in the upper middle catchment of the olifants river basin. Journal of Water and Climate Change, 12(1), 250–264. doi: 10.2166/wcc.2020.187
Nsubuga, F.N.W., Mearns, K.F., Adeola, A.M., 2019. Lake Sibayi variations in response to climate variability in northern KwaZulu-Natal, South Africa. Theoretical and Applied Climatology, 137(1–2), 1233–1245. doi: 10.1007/s00704-018-2640-0
Nyikadzino, B., Chitakira, M., Muchuru, S., 2020. Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Physics and Chemistry of the Earth, 117(102870). doi: 10.1016/j.pce.2020.102870
Olabanji, M.F., Ndarana, T., Davis, N., Archer, E., 2020. Climate change impact on water availability in the olifants catchment (South Africa) with potential adaptation strategies. Physics and Chemistry of the Earth, 120, 1–32. doi: 10.1016/j.pce.2020.102939
Pathak, S., Ojha, C.S.P., Shukla, A.K., Garg, R.D., 2019. Assessment of Annual Water-Balance Models for Diverse Indian Watersheds. Journal of Sustainable Water in the Built Environment, 5(3). doi: 10.1061/jswbay.0000881
Pettitt, A.N., 1979. A Non-parametric to the Approach Problem. Journal of the Royal Statistical Society, 28(2), 126–135.
Pirani, F.J., Modarres, R., 2020. Geostatistical and deterministic methods for rainfall interpolation in the Zayandeh Rud basin, Iran. Hydrological Sciences Journal, 65(16), 2678–2692. doi: 10.1080/02626667.2020.1833014
Praveen, B., Talukdar, S., Shahfahad, Mahato, S., Mondal, J., Sharma, P., Islam, A. R.M.T., Rahman, A., 2020. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific Reports, 10(1), 1–21. doi: 10.1038/s41598-020-67228-7
Salehi, S., Dehghani, M., Mortazavi, S.M., Singh, V.P., 2020. Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, 40(1), 308–323. doi: 10.1002/joc.6211
Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall ’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. doi: 10.1080/01621459.1968.10480934
Shahid, M., Rahman, K.U., 2021. Identifying the Annual and Seasonal Trends of Hydrological and Climatic Variables in the Indus Basin Pakistan. Asia-Pacific Journal of Atmospheric Sciences, 57(2), 191–205. doi: 10.1007/s13143-020-00194-2
Shikwambana, S., Malaza, N., Shale, K., 2021. Impacts of rainfall and temperature changes on smallholder agriculture in the Limpopo province, South Africa. Water, 13(20). doi: 10.3390/w13202872
Singh, L., Khare, D., Prabhash, K.M., Pingale, S.M., Thakur, H.P., 2020. Spatial and temporal precipitation trends of proposed smart cities based on homogeneous monsoon regions across India. Journal of Water and Land Development, 47(1), 150–159. doi: 10.24425/jwld.2020.135042
Singh, R., Pandey, V.P., Kayastha, S.P., 2021. Hydro-climatic extremes in the Himalayan watersheds: a case of the Marshyangdi Watershed, Nepal. Theoretical and Applied Climatology, 143(1–2), 131–158. doi: 10.1007/s00704-020-03401-2
Sinha, J., Sharma, A., Khan, M., Goyal, M.K., 2018. Assessment of the impacts of climatic variability and anthropogenic stress on hydrologic resilience to warming shifts in Peninsular India. In Scientific Reports (Vol. 8, Issue 1). Springer US. doi: 10.1038/s41598-018-32091-0
Solaimani, K., Habaibnejad, M., Pirnia, A., 2021. Temporal trends of hydro-climatic variables and their relevance in water resource management. International Journal of Sediment Research, 36, 63–75. doi: 10.1016/j.ijsrc.2020.04.001
Tadese, M.T., Kumar, L., Koech, R., Zemadim, B., 2019. Hydro-climatic variability: A characterisation and trend study of the Awash River Basin, Ethiopia. Hydrology, 6(35). doi: 10.3390/hydrology6020035
Tefera, A.H., 2017. Application of Water Balance Model Simulation for Water Resource Assessment in Upper Blue Nile of North Ethiopia Using HEC-HMS by GIS and Remote Sensing: Case of Beles River Basin. International Journal of Hydrology, 1(7), 222–227. doi: 10.15406/ijh.2017.01.00038
Tekleab, S., Mohamed, Y., Uhlenbrook, S., 2013. Hydro-climatic trends in the Abay/Upper Blue Nile basin, Ethiopia. Physics and Chemistry of the Earth, 61, 32–42. doi: 10.1016/j.pce.2013.04.017
Tekleab, S., Mohamed, Y., Uhlenbrook, S., Wenninger, J., 2014. Hydrologic responses to land cover change: The case of Jedeb mesoscale catchment, Abay/Upper Blue Nile Basin, Ethiopia. Hydrological Processes, 28(20), 5149–5161. doi: 10.1002/hyp.9998
Teshome, F.T., Bayabil, H.K., Thakural, L.N., Welidehanna, F.G., 2020. Verification of the MIKE11-NAM Model for Simulating Streamflow. Journal of Environmental Protection, 11, 152–167. doi: 10.4236/jep.2020.112010
Thapa, B.R., Ishidaira, H., Pandey, V.P., Shakya, N.M., 2017. A multi-model approach for analyzing water balance dynamics in Kathmandu Valley, Nepal. Journal of Hydrology: Regional Studies, 9, 149–162. doi: 10.1016/j.ejrh.2016.12.080
Wakigari, S.A., 2017. Evaluation of conceptual hydrological models in data scarce region of the upper blue nile basin: Case of the upper guder catchment. Hydrology, 4(59). doi: 10.3390/hydrology4040059
Zhao, F., Zhang, L., Chiew, F.H.S., Vaze, J., Cheng, L., 2013. The effect of spatial rainfall variability on water balance modelling for south-eastern Australian catchments. Journal of Hydrology, 493, 16–29. doi: 10.1016/j.jhydrol.2013.04.028