Integration of conceptual hydrological and machine learning models via output augmentation for enhanced streamflow prediction

نوع مقاله : پژوهشی

نویسندگان

1 PhD Candidate in Geoinformation and Earth Observation for Hydrology, Faculty of Meteorology and Hydrology, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia

2 Associate Professor, Faculty of Civil and Water Resources Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia

3 Assistant Professor, Institute of Geophysics, Space Science, and Astronomy, Atmospheric and Oceanic Sciences Unit, Addis Ababa University, Addis Ababa, Ethiopia

چکیده

Quantifying water resources is essential for developing evidence-based management strategies. Hydrological models play a great role in estimating streamflow, particularly in regions with limited flow measurement infrastructure. This study evaluates the integration of the GR4J conceptual hydrological model with Machine Learning (ML) techniques, Random Forest (RF), Extreme Learning Machine (ELM), eXtreme Gradient Boosting (XGB), and Long Short-Term Memory (LSTM) networks to improve daily streamflow prediction in the Bilate River watershed. Though GR4J captures general hydrological trends, its limitations in modeling nonlinear dynamics and extreme flows necessitate advanced approaches by augmenting GR4J’s simulated outputs with climate input features to train the ML models. The integrated models GR4J-RF, GR4J-ELM, GR4J-XGB, and GR4J-LSTM combine GR4J’s physical interpretability with ML’s capability to capture complex and nonlinear relationships, addressing the shortcomings of both the conceptual and ML methods. Findings of the study demonstrate significant improvements over standalone GR4J, with GR4J-LSTM and GR4J-XGB achieving the highest test performance (NSE of 0.77, KGE of up to 0.86), GR4J-RF excelling in training fit (train NSE of 0.87) with gaps in generalization, and GR4J-ELM offering computational efficiency with comparable performance (test NSE of 0.74). These findings highlight the potential of integrated modeling to improve streamflow prediction in data-limited regions, supporting applications such as flood prediction and drought monitoring.

کلیدواژه‌ها

موضوعات


References

Adane, G. B., Hirpa, B. A., Lim, C. H., & Lee, W. K. (2021). Evaluation and comparison of satellite-derived estimates of rainfall in the diverse climate and terrain of central and northeastern ethiopia. Remote Sensing, 13(7).  doi: 10.3390/rs13071275
Adnan, R. M., Liang, Z., Trajkovic, S., Zounemat-Kermani, M., Li, B., & Kisi, O. (2019). Daily streamflow prediction using optimally pruned extreme learning machine. Journal of Hydrology, 577, 123981.  doi: 10.1016/j.jhydrol.2019.123981
Al-Mukhtar, M., & Al-Yaseen, F. (2019). Modeling water quality parameters using data-driven models, a case study Abu-Ziriq marsh in south of Iraq. Hydrology, 6(1).  doi: 10.3390/hydrology6010021
Anshuman, A., Kunnath-Poovakka, A., & Eldho, T. I. (2021). Performance evaluation of conceptual rainfall-runoff models GR4J and AWBM. ISH Journal of Hydraulic Engineering, 27(4), 365–374.  doi: 10.1080/09715010.2018.1556124
Armstrong, W., Arsenault, R., Martel, J., Troin, M., Sabzipour, B., Brissette, F., & Mai, J. (2025). Improving multi-model ensemble streamflow forecasts by combining lumped , distributed and deep learning hydrological models. Hydrological Sciences Journal, 0(0). doi: 10.1080/02626667.2025.2471430
Asgari, E., Mostafazadeh, R., & Talebi Khiavi, H. (2025). Projecting the Climate Change Impact on Water Yield in a Cold Mountainous Watershed, Ardabil. Journal of the Earth and Space Physics, 50(4), 165–177. doi: 10.22059/JESPHYS.2025.375570.1007601
Ayalew, A. D., Wagner, P. D., Tigabu, T. B., Sahlu, D., & Fohrer, N. (2023). Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change, 14(8), 2788–2807. doi: 10.2166/wcc.2023.138
Bargam, B., Boudhar, A., Kinnard, C., Bouamri, H., Nifa, K., & Chehbouni, A. (2024). Evaluation of the support vector regression (SVR) and the random forest (RF) models accuracy for streamflow prediction under a data-scarce basin in Morocco. Discover Applied Sciences, 6(6). doi: 10.1007/s42452-024-05994-z
Bartz-beielstein, E. B. T., & Zaefferer, M. (2023). Hyperparameter Tuning for Machine and Deep Learning with R. In Hyperparameter Tuning for Machine and Deep Learning with R. doi: 10.1007/978-981-19-5170-1
Beza, M., Tatek, E., Chala, M., & Moshe, A. (2024). Watershed hydrological responses to land use land cover changes at Bilata watershed, Rift Valley Basin, southern Ethiopia. Water Practice and Technology, 19(4), 1455–1472. doi: 10.2166/wpt.2024.066
Breiman, L. (2001). Random Forest. Machine Learning, 45, 5–32. doi: 10.1023/A:1010933404324
Chen, T., & Guestrin, C. (2016). XGBoost : A Scalable Tree Boosting System. 785–794. doi: 10.1145/2939672.2939785
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., … Peters-lidard, C. D. (2017). The evolution of process-based hydrologic models : historical challenges and the collective quest for physical realism. (1969), 3427–3440.
Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random Forests. In C. Zhang & Y. Ma (Eds.), Ensemble Machine Learning Methods and Applications (pp. 157–175). Springer.
Dambré, K., Domiho, K. J., Faya, L., Vodounon, T., Sourou, H., & Ernest, A. (2024). Rain-Flow Modelling Using the GR4J Model for Flood Risk Management in the Oti Watershed ( Togo ). 213–230. doi: 10.4236/ojmh.2024.144012
Darota, F. D., Borko, H. B., Adinew, C. D., & Edamo, M. L. (2024). Predicting sediment yield and locating hotspot areas in the Hamesa watershed of Ethiopia for effective watershed management. Journal of Water and Climate Change, 15(4), 1855–1868. doi: 10.2166/wcc.2024.648
Dessie, M., Verhoest, N. E. C., Pauwels, V. R. N., Admasu, T., Poesen, J., Adgo, E., … Nyssen, J. (2014). Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia. Hydrology and Earth System Sciences, 18(12), 5149–5167. doi: 10.5194/hess-18-5149-2014
Digital Earth Africa. (2025). Digital Earth Africa Sandbox.
Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, 144(November 2017), 292–312. doi: 10.1002/qj.3244
Duc, L., & Sawada, Y. (2023). A signal-processing-based interpretation of the Nash-Sutcliffe efficiency. Hydrology and Earth System Sciences, 27(9), 1827–1839. doi: 10.5194/hess-27-1827-2023
Emerton, R., Zsoter, E., Arnal, L., Cloke, H. L., Muraro, D., Prudhomme, C., … Pappenberger, F. (2018). Developing a global operational seasonal hydro-meteorological forecasting system : GloFAS-Seasonal v1 . 0. 3327–3346.
Enku, T., & Melesse, A. M. (2013). A simple temperature method for the estimation of evapotranspiration. HYDROLOGICAL PROCESSES, 2274(November 2008), 2267–2274. doi: doi: 10.1002/hyp.9844
Fowler, K., Knoben, W., Peel, M., & Peterson, T. (2020). Many Commonly Used Rainfall ‐ Runoff Models Lack Long , Slow Dynamics : Implications for Runoff Projections Water Resources Research. 1–27. doi: 10.1029/2019WR025286
Gers, F. A., & Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Choice Reviews Online, 27(09), 27-5238-27–5238. doi: 10.5860/choice.27-5238
Graves, A., Jaitly, N., & Mohamed, A. R. (2013). Hybrid speech recognition with Deep Bidirectional LSTM. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU 2013 - Proceedings, 273–278. doi: 10.1109/ASRU.2013.6707742
Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. doi: 10.1109/TNNLS.2016.2582924
Hah, D., Quilty, J. M., & Sikorska-senoner, A. E. (2022). Ensemble and stochastic conceptual data-driven approaches for improving streamflow simulations : Exploring different hydrological and data-driven models and a diagnostic tool. Environmental Modelling and Software, 157(July), 105474. doi: 10.1016/j.envsoft.2022.105474
Hamzah, F. B., Hamzah, F. M., Razali, S. F. M., & Samad, H. (2021). A comparison of multiple imputation methods for recovering missing data in hydrological studies. Civil Engineering Journal (Iran), 7(9), 1608–1619. doi: 10.28991/cej-2021-03091747
Hao, R., & Bai, Z. (2023). Comparative Study for Daily Streamflow Simulation with Different Machine Learning Methods. Water (Switzerland), 15(6). doi: 10.3390/w15061179
He, S., Gu, L., Tian, J., Deng, L., Yin, J., Liao, Z., … Hui, Y. (2021). Machine learning improvement of streamflow simulation by utilizing remote sensing data and potential application in guiding reservoir operation. Sustainability (Switzerland), 13(7). doi: 10.3390/su13073645
Huang, G. Bin, Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107–122. doi: 10.1007/s13042-011-0019-y
Huang, G. Bin, Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501. doi: 10.1016/j.neucom.2005.12.126
Humphrey, G. B., Gibbs, M. S., Dandy, G. C., & Maier, H. R. (2016). A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. Journal of Hydrology, 540, 623–640. doi: 10.1016/j.jhydrol.2016.06.026
Ibrahim, A. H., Molla, D. D., & Lohani, T. K. (2024). Performance evaluation of satellite-based rainfall estimates for hydrological modeling over Bilate river basin, Ethiopia. World Journal of Engineering, 21(1), 1–15. doi: 10.1108/WJE-03-2022-0106
Janjić, J., & Tadić, L. (2023). Fields of Application of SWAT Hydrological Model—A Review. Earth (Switzerland), 4(2), 331–344. doi: 10.3390/earth4020018
Kapoor, A., Pathiraja, S., Marshall, L., & Chandra, R. (2023). DeepGR4J: A deep learning hybridization approach for conceptual rainfall-runoff modelling. Environmental Modelling and Software, 169(June), 105831. doi: 10.1016/j.envsoft.2023.105831
Khandelwal, A., Xu, S., Li, X., Jia, X., Stienbach, M., Duffy, C., … Kumar, V. (2020). Physics Guided Machine Learning Methods for Hydrology. Retrieved from http://arxiv.org/abs/2012.02854
Kodja, D. J., Mahé, G., Amoussou, E., Boko, M., Kodja, D. J., Mahé, G., … Paturel, J. E. (2023). Assessment of the Performance of Rainfall-Runoff Model GR4J to Simulate Streamflow in Ouémé Watershed at Bonou ’ s outlet ( West Africa To cite this version : HAL Id : hal-04133007 Assessment of the Performance of Rainfall-Runoff Model GR4J to Simulate St. 0–18. doi: 10.20944/preprints201803.0090.v1
Konapala, G., Kao, S., Painter, S. L., & Lu, D. (2020). Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous US OPEN ACCESS Machine learning assisted hybrid models can improve streamflow simulation in diverse catchments across the conterminous .
Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005–6022. doi: 10.5194/hess-22-6005-2018
Kumanlioglu, A. A., & Fistikoglu, O. (2019). Performance Enhancement of a Conceptual Hydrological Model by Integrating Artificial Intelligence. Journal of Hydrologic Engineering, 24(11), 04019047. doi: 10.1061/(asce)he.1943-5584.0001850
Kunnath-Poovakka, A., & Eldho, T. I. (2019). A comparative study of conceptual rainfall-runoff models GR4J, AWBM and Sacramento at catchments in the upper Godavari river basin, India. Journal of Earth System Science, 128(2), 1–15. doi: 10.1007/s12040-018-1055-8
Kwak, J., Han, H., Kim, S., & Kim, H. S. (2022). Is the deep-learning technique a completely alternative for the hydrological model?: A case study on Hyeongsan River Basin, Korea. Stochastic Environmental Research and Risk Assessment, 36(6), 1615–1629. doi: 10.1007/s00477-021-02094-x
Le, X. H., Nguyen, D. H., Jung, S., Yeon, M., & Lee, G. (2021). Comparison of Deep Learning Techniques for River Streamflow Forecasting. IEEE Access, 9, 71805–71820. doi: 10.1109/ACCESS.2021.3077703
Li, Xia, Xu, W., Ren, M., Jiang, Y., & Fu, G. (2022). Hybrid CNN-LSTM models for river flow prediction. Water Supply, 22(5), 4902–4920. doi: 10.2166/ws.2022.170
Li, Xue, Sha, J., & Wang, Z. L. (2019). Comparison of daily streamflow forecasts using extreme learning machines and the random forest method. Hydrological Sciences Journal, 64(15), 1857–1866. doi: 10.1080/02626667.2019.1680846
Liu, D., Jiang, W., Mu, L., & Wang, S. (2020). Streamflow Prediction Using Deep Learning Neural Network: Case Study of Yangtze River. IEEE Access, 8, 90069–90086. doi: 10.1109/ACCESS.2020.2993874
Liu, J., Yuan, X., Zeng, J., Jiao, Y., Li, Y., Zhong, L., & Yao, L. (2022). Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. 265–278.
Liu, S., Wang, J., Wang, H., & Wu, Y. (2022). Post-processing of hydrological model simulations using the convolutional neural network and support vector regression. Hydrology Research, 53(4), 605–621. doi: 10.2166/nh.2022.004
Loon, A. F. Van, Stahl, K., Baldassarre, G. Di, Clark, J., Rangecroft, S., Wanders, N., … Uijlenhoet, R. (2016). Drought in a human-modified world : reframing drought definitions , understanding , and analysis approaches. (1), 3631–3650. doi: 10.5194/hess-20-3631-2016
Ma, J., Sun, W., Yang, G., & Zhang, D. (2018). Hydrological Analysis Using Satellite Remote Sensing Big Data and CREST Model. IEEE Access, 6, 9006–9016. doi: 10.1109/ACCESS.2018.2810252
Mada, Z. M., & Nannawo, A. S. (2023). Enhancing Understanding of Hydrologic Processes in the Shafe Watershed, Ethiopia. Advances in Civil Engineering, 2023. doi: 10.1155/2023/5577851
Mei, Z., Peng, T., Chen, L., Singh, V. P., Yi, B., Leng, Z., … Xie, T. (2024). Coupling SWAT and LSTM for Improving Daily Streamflow Simulation in a Humid and Semi-humid River Basin. Water Resources Management, 397–418. doi: 10.1007/s11269-024-03975-w
Mohammadi, B., Safari, M. J. S., & Vazifehkhah, S. (2022). IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Scientific Reports, 12(1), 1–21. doi: 10.1038/s41598-022-16215-1
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.
Nannawo, A. S., Lohani, T. K., Eshete, A. A., & Ayana, M. T. (2022). Evaluating the dynamics of hydroclimate and streamflow for data-scarce areas using MIKE11-NAM model in Bilate river basin, Ethiopia. Modeling Earth Systems and Environment, 8(4), 4563–4578. doi: 10.1007/s40808-022-01455-x
Napiorkowski, J. J., Piotrowski, A. P., Karamuz, E., & Senbeta, T. B. (2023). Calibration of conceptual rainfall-runoff models by selected differential evolution and particle swarm optimization variants. Acta Geophysica, 71(5), 2325–2338. doi: 10.1007/s11600-022-00988-0
Nash, J. E., & Sutcliffe, J. V. (1970). River Flow Forecasting Through Conceptual Models - Part I - A Discussion of Principles. Journal of Hydrology, 10(1970), 282–290.
Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., … Gupta, H. V. (2020). What Role Does Hydrological Science Play in the Age of Machine Learning ? Water Resources Research. (2019). doi: 10.1029/2020WR028091
Nguyen, N. Y., Anh, T. N., Nguyen, H. D., & Dang, D. K. (2024). Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam. Journal of Hydroinformatics, 26(8), 2026–2044. doi: 10.2166/hydro.2024.225
Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1–4), 275–289. doi: 10.1016/S0022-1694(03)00225-7
Sezen, C., Bezak, N., Bai, Y., & Šraj, M. (2019). Hydrological modelling of karst catchment using lumped conceptual and data mining models. Journal of Hydrology, 576, 98–110. doi: 10.1016/j.jhydrol.2019.06.036
Sezen, C., & Partal, T. (2022). New hybrid GR6J-wavelet-based genetic algorithm-artificial neural network (GR6J-WGANN) conceptual-data-driven model approaches for daily rainfall–runoff modelling. Neural Computing and Applications, 34(20), 17231–17255. doi: 10.1007/s00521-022-07372-5
Shen, C., Laloy, E., Albert, A., Chang, F.-J., Elshorbagy, A., Ganguly, S., … Tsai, W.-P. (2018). HESS Opinions: Deep learning as a promising avenue toward knowledge discovery in water sciences. Hydrology and Earth System Sciences Discussions, (April), 1–21. doi: 10.5194/hess-2018-168
Shen, C., Laloy, E., Elshorbagy, A., Albert, A., Bales, J., Chang, F. J., … Tsai, W. P. (2018). HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community. Hydrology and Earth System Sciences, 22(11), 5639–5656. doi: 10.5194/hess-22-5639-2018
Shi, P., Chen, C., Srinivasan, R., Zhang, X., Cai, T., Fang, X., … Li, Q. (2011). Evaluating the SWAT Model for Hydrological Modeling in the Xixian Watershed and a Comparison with the XAJ Model. Water Resources Management, 25(10), 2595–2612. doi: 10.1007/s11269-011-9828-8
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The Performance of LSTM and BiLSTM in Forecasting Time Series. Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 3285–3292. doi: 10.1109/BigData47090.2019.9005997
Tao, H., Majeed, M., Abdulameer, H., Zounemat-, M., Heddam, S., Kim, S., … Falah, M. W. (2022). Neurocomputing Groundwater level prediction using machine learning models : A comprehensive review. Neurocomputing, 489, 271–308. doi: 10.1016/j.neucom.2022.03.014
Tian, Y., Xu, Y. P., Yang, Z., Wang, G., & Zhu, Q. (2018). Integration of a parsimonious hydrological model with recurrent neural networks for improved streamflow forecasting. Water (Switzerland), 10(11). doi: 10.3390/w10111655
Tyralis, H., & Papacharalampous, G. (2019). A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water.
Wegayehu, E. B., & Muluneh, F. B. (2021). Multivariate Streamflow Simulation Using Hybrid Deep. 2021(1).
Wegayehu, E. B., & Muluneh, F. B. (2022). Short-Term Daily Univariate Streamflow Forecasting Using Deep Learning Models. Advances in Meteorology, 2022. doi: 10.1155/2022/1860460
Woldemariam, Y. A., Woldesenbet, T. A., & Alamirew, T. (2025). Evaluation and projection of CMIP6 simulations of climate variables for the Rift Valley Lakes Basin, Ethiopia. Theoretical and Applied Climatology, 156(2). doi: 10.1007/s00704-025-05356-8
Xiang, Z., Yan, J., & Demir, I. (2020). A Rainfall-Runoff Model With LSTM-Based Sequence-to-Sequence Learning. Water Resources Research, 56(1), 1–17. doi: 10.1029/2019WR025326
Yang, J., Chen, F., Long, A., Sun, H., He, C., & Liu, B. (2024). Runoff simulation of the Kaidu River Basin based on the GR4J-6 and GR4J-6-LSTM models. Journal of Hydrology: Regional Studies, 56, 102034. doi: 10.1016/j.ejrh.2024.102034
Yaseen, Z. M., Jaafar, O., Deo, R. C., Kisi, O., Adamowski, J., Quilty, J., & El-Shafie, A. (2016). Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. Journal of Hydrology, 542, 603–614. doi: 10.1016/j.jhydrol.2016.09.035
Zamani, M., Shrestha, N. K., Akhtar, T., Boston, T., & Daggupati, P. (2021). Advancing model calibration and uncertainty analysis of SWAT models using cloud computing infrastructure: LCC-SWAT. Journal of Hydroinformatics, 23(1), 1–15. doi: 10.2166/hydro.2020.066
Zhang, R., Zen, R., Xing, J., Arsa, D. M. S., Saha, A., & Bressan, S. (2020). Hydrological Process Surrogate Modelling and Simulation with Neural Networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12085 LNAI, 449–461. doi: 10.1007/978-3-030-47436-2_34
Zhang, Y., & Thorburn, P. J. (2022). Handling missing data in near real-time environmental monitoring : A system and a review of selected methods. Future Generation Computer Systems, 128, 63–72. doi: 10.1016/j.future.2021.09.033