Green synthesis of silver nanoparticles using Chromolaena odorata leaf extract for adsorptive removal of heavy metals and textile dyes from aqueous systems

نوع مقاله : پژوهشی

نویسنده

Teacher II, Science Department, Nueva Vizcaya General Comprehensive High School, Bayombong, Philippines

چکیده

Heavy metal and dye pollution in water resources presents a pressing global challenge due to its adverse impacts on environmental quality and human health. Conventional treatment methods, while effective, are often costly, energy-intensive, and generate secondary waste. In this study, silver nanoparticles (AgNPs) were synthesized via an ecofriendly green method using Chromolaena odorata leaves collected from Nueva Vizcaya, Philippines. The phytochemical-rich extract served as both a reducing and stabilizing agent. The synthesized nanoparticles were characterized by ultraviolet–visible (UV–Vis) spectroscopy, with a distinct surface plasmon resonance (SPR) peak observed at 428 nm, confirming nanoparticle formation and stability. Adsorption experiments were conducted to evaluate the removal efficiency of AgNPs against selected heavy metals (Pb2+, Fe2+, Cu2+, Co2+) and textile dyes (methyl orange, methyl red, methyl blue, Congo red) using simulated wastewater prepared from analytical-grade reagents. Results revealed high removal efficiencies, with Pb2+ (92.3%) and methyl orange (89.7%) exhibiting the highest adsorption under optimal conditions, while other contaminants ranged between 74.5% and 86.8%. Kinetic analysis demonstrated that adsorption followed a pseudo-second-order model (R² > 0.99), indicating chemisorption as the dominant mechanism, with equilibrium reached within 90–100 minutes. Isotherm modeling confirmed monolayer adsorption, with Pb2+ showing the highest maximum adsorption capacity (50 mg/g), followed by Fe2+ (46 mg/g), Cu2+ (43 mg/g), and Co2+ (44.5 mg/g). Dye adsorption capacities ranged from 40 to 42 mg/g. Thermodynamic parameters revealed negative Gibbs free energy (–18 to –25.5 kJ/mol), positive enthalpy (15–18 kJ/mol), and positive entropy (118–140 J/mol·K), confirming that the process was spontaneous, endothermic, and entropy-driven. These findings highlight the potential of C. odorata-derived AgNPs as sustainable and effective adsorbents for wastewater remediation. However, limitations include testing under controlled laboratory conditions, warranting further studies in real wastewater systems and assessments of nanoparticle reusability and scalability. Overall, this study advances green nanotechnology for environmental applications and supports the development of cost-effective, ecofriendly water treatment strategies.

کلیدواژه‌ها

موضوعات


References
Acain, E. G. B., Andres, H. S. L., Bantayan, K. A. T., Honghong, A. M. N., Mugot, M. A. C., Rebayla, S. B., & Timbancaya, Z. D. D. (2024). Antibacterial efficacy of Madre de Cacao (Gliricidia sepium) and Hagonoy (Chromolaena odorata) leaves extract against sewage water bacteria. World Journal of Biology Pharmacy and Health Sciences, 18(3), 166–170. doi: 10.30574/wjbphs.2024.18.3.0344
Adeyemi, J. O., Oriola, A. O., Onwudiwe, D. C., & Oyedeji, A. O. (2022). Plant extracts mediated metal-based nanoparticles: synthesis and biological applications. Biomolecules, 12(5), 627. doi: 10.3390/biom12050627
Agustina, T. E., Handayani, W., & Imawan, C. (2021). The UV-vis spectrum analysis from silver nanoparticles synthesized using Diospyros maritima Blume leaves extract. Proceedings of the 3rd KOBI Congress, International and National Conferences (KOBICINC 2020). doi: 10.2991/absr.k.210621.070
Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., Bilal, M., Omer, M., Alamzeb, M., Salman, S. M., & Ali, S. (2019). Green nanotechnology: a review on green synthesis of silver nanoparticles — an ecofriendly approach. International Journal of Nanomedicine, 14, 5087–5107. doi:  10.2147/ijn.s200254
Akpan, V. E., Omole, D. O., & Bassey, D. E. (2020). Assessing the public perceptions of treated wastewater reuse: opportunities and implications for urban communities in developing countries. Heliyon, 6(10), e05246. doi: 10.1016/j.heliyon.2020.e05246
Amini, A., Kim, Y., Zhang, J., Boyer, T., & Zhang, Q. (2015). Environmental and economic sustainability of ion exchange drinking water treatment for organics removal. Journal of Cleaner Production, 104, 413–421. doi: 10.1016/j.jclepro.2015.05.056
Baggio, G., Adamowski, J., Hyde, V. J., & Qadir, M. (2023). Small-scale desalination and atmospheric water provisioning systems in water-scarce vulnerable communities: status and perspectives. International Journal of Water Resources Development, 40(4), 686–717. doi: 10.1080/07900627.2023.2273475
Barbaro, P., & Liguori, F. (2008). Ion exchange resins: catalyst recovery and recycle. Chemical Reviews, 109(2), 515–529. doi: 10.1021/cr800404j
Benalia, M. C., Youcef, L., Bouaziz, M. G., Achour, S., & Menasra, H. (2021). Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arabian Journal for Science and Engineering, 47(5). doi: 10.1007/s13369-021-05525-7
Camargo, F. P., Tonello, P. S., dos Santos, A. C. A., & Duarte, I. C. S. (2016). removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—a review. Water, Air, & Soil Pollution, 227(12). doi: 10.1007/s11270-016-3141-3
Chopra, H., Bibi, S., Singh, I., Hasan, M. M., Khan, M. S., Yousafi, Q., Baig, A. A., Rahman, Md. M., Islam, F., Emran, T. B., & Cavalu, S. (2022). Green metallic nanoparticles: biosynthesis to applications. Frontiers in Bioengineering and Biotechnology, 10. doi: 10.3389/fbioe.2022.874742
Chowdhury, S., Yusof, F., Faruck, M. O., & Sulaiman, N. (2016). Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Engineering, 148, 992–999. doi: 10.1016/j.proeng.2016.06.552
Creswell, J. W., & Creswell, J. D. (2023). Research Design: Qualitative, Quantitative & Mixed Methods Approaches. 6th Edition: Sage.
Dixit, M., & Shukla, P. (2020). Microbial nanotechnology for bioremediation of industrial wastewater. Frontiers in Microbiology, 11. doi: 10.3389/fmicb.2020.590631
Eke, J., Yusuf, A., Giwa, A., & Sodiq, A. (2020). The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, 495, 114633. doi: 10.1016/j.desal.2020.114633
Elewa, M. M. (2024). Emerging and conventional water desalination technologies powered by renewable energy and energy storage systems toward zero liquid discharge. Separations, 11(10), 291. doi: 10.3390/separations11100291
Elimelech, M. (2006). The global challenge for adequate and safe water. Journal of Water Supply: Research and Technology - Aqua, 55(1), 3–10. doi: 10.2166/aqua.2005.064
Espiritu, E. Q., Claveria, R. J. R., & Bernadas, P. J. C. (2022). Assessment of surface water quality and mercury levels from Artisanal and small-scale gold mining (ASGM) along Acupan River, Benguet, Philippines. Environmental Geochemistry and Health, 44(10). doi: 10.1007/s10653-021-01137-0
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. doi: 10.1016/j.jenvman.2010.11.011
Giraldo, L. J., Giraldo, M. A., Llanos, S., Maya, G., Zabala, R. D., Nassar, N. N., Franco, C. A., Alvarado, V., & Cortés, F. B. (2017). The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 159, 841–852. doi: 10.1016/j.petrol.2017.10.009
Hanafi, M. F., & Sapawe, N. (2021). A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes. Materials Today: Proceedings, 31, A141–A150. doi: 10.1016/j.matpr.2021.01.258
Hashim, S. E., & John, A. (2023). Green synthesis of silver nanoparticles using leaves of Chromolaena odorata and its antioxidant activity. Journal of Tropical Life Science, 13(2), 305–310. doi: 10.11594/jtls.13.02.08
Ismail, M., Akhtar, K., Khan, M. I., Kamal, T., Khan, M. A., M. Asiri, A., Seo, J., & Khan, S. B. (2019). Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Current Pharmaceutical Design, 25(34), 3645–3663. doi: 10.2174/1381612825666191021142026
Jan, S., Mishra, A. K., Bhat, M. A., & Jan, A. T. (2023). Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. Environmental Science and Pollution Research, 30(53). doi: 10.1007/s11356-023-30302-4
Jeppu, G. P., & Clement, T. P. (2012). A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology, 129-130, 46–53. doi: 10.1016/j.jconhyd.2011.12.001
Kolya, H., & Kang, C.-W. (2024). Toxicity of metal oxides, dyes, and dissolved organic matter in water: implications for the environment and human health. Toxics, 12(2), 111. doi: 10.3390/toxics12020111
Kumar, V., & Dwivedi, S. K. (2021). Toxicity potential of electroplating wastewater and its bioremediation approaches: A review. Environmental Technology Reviews, 10(1), 238–254. doi: 10.1080/21622515.2021.1983030
Liu, H., & Webster, T. J. (2007). Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials, 28(2), 354–369. doi: 10.1016/j.biomaterials.2006.08.049
Manuel, R. P. (2019). Physico-chemical characteristics  of  selected tributaries  of  Didipio  River,  Eastern  Nueva  Vizcaya,  Philippines. Mountain Journal of Science and Interdisciplinary Research (Formerly Benguet State University Research Journal), 79(1), 17–30. doi: 10.70884/mjsir.v79i1.171
Maramba, N. P. C., Reyes, J. P., Francisco-Rivera, A. T., Panganiban, L. C. R., Dioquino, C., Dando, N., Timbang, R., Akagi, H., Castillo, Ma. T., Quitoriano, C., Afuang, M., Matsuyama, A., Eguchi, T., & Fuchigami, Y. (2006). Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: A toxic legacy. Journal of Environmental Management, 81(2), 135–145. doi: 10.1016/j.jenvman.2006.02.013
Mehta, P., Chelike, D. K., & Rathore, R. K. (2024). Adsorption-based approaches for exploring nanoparticle effectiveness in wastewater treatment. ChemistrySelect, 9(25). doi: 10.1002/slct.202400959
Morin-Crini, N., Lichtfouse, E., Fourmentin, M., Ribeiro, A. R. L., Noutsopoulos, C., Mapelli, F., Fenyvesi, É., Vieira, M. G. A., Picos-Corrales, L. A., Moreno-Piraján, J. C., Giraldo, L., Sohajda, T., Huq, M. M., Soltan, J., Torri, G., Magureanu, M., Bradu, C., & Crini, G. (2022). Removal of emerging contaminants from wastewater using advanced treatments. A review. Environmental Chemistry Letters, 20(2), 1333–1375. doi: 10.1007/s10311-021-01379-5
Ncibi, M. C. (2008). Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. Journal of Hazardous Materials, 153(1-2), 207–212. doi: 10.1016/j.jhazmat.2007.08.038
Nnaji, N. D., Onyeaka, H., Miri, T., & Ugwa, C. (2023). Bioaccumulation for heavy metal removal: a review. SN Applied Sciences, 5(5). doi: 10.1007/s42452-023-05351-6
Oladimeji, T. U.,  Oyedemi, M., Emetere, M. E.,  Agboola, O., Adeoye, J. B., & Odunlami, O. A.. (2024). Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon, 10(23), e40370–e40370. doi: 10.1016/j.heliyon.2024.e40370
Oluwafemi, O. S., Anyik, J. L., & Zikalala, N. E. (2019). Biosynthesis of silver nanoparticles from water hyacinth plant leaves extract for colourimetric sensing of heavy metals. Nano-Structures & Nano-Objects, 20, 100387–100387. doi: 10.1016/j.nanoso.2019.100387
Ormerod, K. J., & Scott, C. A. (2012). Drinking wastewater. Science, Technology, & Human Values, 38(3), 351–373. doi: 10.1177/0162243912444736
Osman, A. I., Chen, Z., Elgarahy, A. M., Farghali, M., I. M., M., Priya, A. K., Hawash, H. B., & Yap, P. (2024). Membrane technology for energy saving: principles, techniques, applications, challenges, and prospects. Advanced Energy and Sustainability Research, 5(5). doi: 10.1002/aesr.202400011
Pascual, L. J. H., Domingo, S. N., & Manejar, A. J. A. (2022). Implications of Lifting the Open-Pit Mining Ban in the Philippines. Www.econstor.eu. https://www.econstor.eu/handle/10419/284597
Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters, 18(6), 2055–2068. doi: 10.1007/s10311-020-01058-x
Periyasamy, A. P. (2024). Recent Advances in the remediation of textile-dye-containing wastewater: prioritizing human health and sustainable wastewater treatment. Sustainability, 16(2), 495. doi: 10.3390/su16020495
Ray, T. R., Lettiere, B., de Rutte, J., & Pennathur, S. (2015). Quantitative characterization of the colloidal stability of metallic nanoparticles using UV-vis absorbance spectroscopy. Langmuir: The ACS Journal of Surfaces and Colloids, 31(12), 3577–3586. doi: 10.1021/la504511j
Rezania, S., Darajeh, N., Rupani, P. F., Mojiri, A., Kamyab, H., & Taghavijeloudar, M. (2024). Recent advances in the adsorption of different pollutants from wastewater using carbon-based and metal-oxide nanoparticles. Applied Sciences, 14(24), 11492–11492. doi: 10.3390/app142411492
Saeb, A. T. M., Alshammari, A. S., Al-Brahim, H., & Al-Rubeaan, K. A. (2014). Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. The Scientific World Journal, 2014, 1–9. doi: 10.1155/2014/704708
Sumbal, N., Nadeem, A., Naz, S., Ali, J. S., Mannan, A., & Zia, M. (2019). Synthesis, characterization and biological activities of monometallic and bimetallic nanoparticles using Mirabilis jalapa leaf extract. Biotechnology Reports, 22, e00338. doi: 10.1016/j.btre.2019.e00338
Tizabi, Y., Bennani, S., El Kouhen, N., Getachew, B., & Aschner, M. (2023). Interaction of heavy metal lead with gut microbiota: implications for autism spectrum disorder. Biomolecules, 13(10), 1549. doi: 10.3390/biom13101549
Varghese, A. G., Paul, S. A., & Latha, M. S. (2018). Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environmental Chemistry Letters, 17(2), 867–877. doi: 10.1007/s10311-018-00843-z
Zahra, N. (2017). Perilous effects of heavy metals contamination on human health. Pakistan Journal of Analytical & Environmental Chemistry, 18(1), 1–17. doi: 10.21743/pjaec/2017.06.01
Zhao, D., Huang, Y., Wang, B., Chen, H., Pan, W., Yang, M., Xia, Z., Zhang, R., & Yuan, C. (2023). Dietary Intake levels of iron, copper, zinc, and manganese in relation to cognitive function: A cross-sectional study. Nutrients, 15(3), 704. doi: 10.3390/nu15030704
Zieliński, B., Miądlicki, P., & Przepiórski, J. (2022). Development of activated carbon for removal of pesticides from water: case study. Scientific Reports, 12(1). doi: 10.1038/s41598-022-25247-6
Zinicovscaia, I. (2016). Conventional methods of wastewater treatment. Cyanobacteria for Bioremediation of Wastewaters, 17–25. doi: 10.1007/978-3-319-26751-7_3
Zuhrotun, A., Oktaviani, D. J.  & Hasanah, A. N. (2023). Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules, 28(7), 3240–3240. doi: 10.3390/molecules28073240