منابع
اسدی، بهار، و شمسالدینی، علی (1403). تفکیک محصولات زراعی با استفاده از ترکیب تصاویر سنتینل-1 و 2 در استان اردبیل.
سنجش از دور و GIS ایران، 16(3)، 25-46
doi:/10.48308/gisj.2023.103095
اسماعیلنژاد، رضا، و زینالزاده، کامران (1398). ارزیابی تغییرات کاربری اراضی با استفاده از سنجش از دور و سیستم اطلاعات جغرافیایی در زیرحوضه نازلوچای.
مدیریت خاک و تولید پایدار، 9(4)، 159-172
doi:10.22069/ejsms.2020.16657.1892
پورحسن، ناهید، شاه حسینی، رضا، و سیدی، سید تیمور ( ۱۴۰۰). ارائه روش طبقهبندی مبتنی بر یادگیری عمیق در تفکیک انواع محصولات کشاورزی با استفاده از تصاویر ماهوارهای سری زمانی.
علوم و فنون نقشه برداری، ۱۱(۱)، 142-129.
dor:
20.1001.1.2322102.1400.11.1.10.8
خسروی، ایمان (1403). تهیۀ نقشۀ نوع محصول کشاورزی از سری زمانی تصاویر لندست-8 با استفاده از روشهای یادگیری ماشین (مطالعۀ موردی: مرودشت استان فارس). جغرافیا و برنامهریزی محیطی، 35(2)،66-45.
doi:10.22108/gep.2024.138615.1601
درویشهندی، محسن، و امیری تکلدانی، ابراهیم (1402). چالشهای مدیریت آب کشاورزی در شبکه آبیاری دشت قزوین. تحقیقات آب و خاک ایران، 54(12)، 1962-1945
صالحی شفا، نیما، بابازاده، حسین، آقایاری، فیاض، صارمی، علی، غفوری، محمدرضا، صفوی، مسعود، و پناهدار، علی (1403)، تدوین الگوی کشت بهینه بهمنظور مدیریت تغییرات سطح آب زیرزمینی دشت شهریار. مدلسازی و مدیریت آب و خاک، 3(2)، 235-217.
راستی، سعید، مهدوی فرد، مصطفی، شیخ قادری، هدایت، نصیری، ابوذر، و تکتاز، نازنین زهرا (1401). بهبود دقت طبقهبندی با ترکیب تصاویر چندفصلی سنتینل 1 و 2 بهمنظور تهیة نقشة کاربری اراضی در فضای ابری گوگل ارث انجین (مطالعة موردی: استان گیلان).
جغرافیا و روابط انسانی، 5(3)، 373-357
. doi:10.22034/gahr.2022.336692.1696
رمضانی اعتدالی، هادی، و احمدی، مژگان (1403). بررسی ارتباط بین شاخصهای خشکسالی با عملکرد ذرت با استفاده از روش جنگل تصادفی (مطالعة موردی: شبکه آبیاری دشت قزوین).
نیوار، 126-127، 137-127.
doi:10.30467/nivar.2024.467444.1299
ساعی جمال آباد، موسی، آبکار، علی اکبر، و مجردی، برات (1397). طبقهبندی گندم زمستانه با استفاده از آنالیز تصاویر بهینه چند زمانی مبتنی بر الگوریتم جنگل تصادفی.
علوم و فنون نقشه برداری، 8 (2 )، 150-133. dor:
20.1001.1.2322102.1397.8.2.9.8
قدسی، زینب، خیرخواه زرکش، میرمسعود، و قرمزچشمه، باقر (1399). مقایسة دقت روشهای ماشین بردار پشتیبان و جنگل تصادفی در تهیة نقشة کاربری اراضی و محصولات زراعی، با استفاده از تصاویر چندزمانة سنتینل-2.
سنجش از دور وGIS ایران، 12(4)، 92-73.
doi:10.52547/gisj.12.4.73
References
Alejo, R., Garcia, V., Sotoca, J.M., Mollineda, R.A., & Sánchez, J.S. (2006). Improving the classification accuracy of RBF and MLP neural networks trained with imbalanced samples. IDEAL 2006. Lecture Notes in Computer Science, Vol 4224. Springer, Berlin, Heidelberg. doi:10.1007/11875581_56.
Aria, M., Cuccurullo, C., & Gnasso, A. (2021). A comparison among interpretative proposals for Random Forests.
Machine Learning with Applications, 6, 100094.
doi:10.1016/j.mlwa.2021.100094.
Asadi, B., & Shamsoddini, A. (2024). Crop mapping using a combination of Sentinel-1 and 2 images in Ardabil province.
Remote Sensing and GIS, 16(3), 25-46.
doi:10.48308/gisj.2023.103095[In Persian]
Asgari, S., & Hasanlou, M. (2023). A comparative study of machine learning classifier for crop type mapping using vegetation indices. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, X-4/W1-2022, 79. doi: 10.5194/isprs-annals-X-4-W1-2022-79-2023
Ashourloo, D., Nematollahi, H., Huete, A., Aghighi, H., Azadbakht, M., Shahrabi, H.S., & Goodarzdashti, S. (2022). A new phenology-based method for mapping wheat and barley using time-series of Sentinel-2 images.
Remote Sensing of Environment, 280, 113206.
doi: 10.1016/j.rse.2022.113206.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. doi: 10.1023/A:1010933404324.
Chauhan, K.K., & Lunagaria, M.M. (2025). Remote sensing-based crop identification and acreage estimation of Rabi Wheat in Anand,
Gujarat. International Environment and Climate Change, 15(1), 1-11
doi: 10.9734/ijecc/2025/v15i14668.
Chen, C., Liaw, A., & Breiman, L. (2004). Using random forest to learn imbalanced data. University of California, Berkeley, 110(1-12), 24.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system.
Proceedings of the 2nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, doi: 10.1145/2939672.2939785.
Gili, M.R., Ashourloo, D., Aghighi, H., Matkan, A. A., & SHakiba, A. (2022). Crop classification with deep convolutional neural network based on crop feature. Environmental Sciences, 20(4), 37-52. doi: 10.48308/envs.2022.1126
d’Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., & van der Velde, M. (2021). From parcel to continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations.
Remote Sensing of Environment, 266, 112708.
doi: 10.1016/j.rse.2021.112708.
Darvish Hendi, M., & Amiri Tokaldany, E. (2024). Agricultural water management challenges in Qazvin Plain Irrigation Network.
Soil and Water Research, 54(12), 1945-1962.
doi: 10.22059/ijswr.2023.365841.669581 [In Persian]
Dong, Q., Chen, X., Chen, J., Zhang, C., Liu, L., Cao, X.,Zang, Y., Zhu, X., & Cui, X. (2020). Mapping winter wheat in North China using Sentinel 2A/B data: A method based on phenology-time weighted dynamic time warping.
Remote Sensing, 12(8), 1274.
doi: 10.3390/rs12081274.
Esmaeilnezhad, r., & Zeinalzadeh, K. (2020). Evaluation of land use changes using remote sensing and GIS in Nazlou Chai sub basin. Soil Management and Sustainable Production, 9(4), 159-172. doi: 10.22069/ejsms.2020.16657.1892 [In Persian]
Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Xiang, L., & Xiang, X. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China.
Energy Conversion and Management, 164.
doi: 10.1016/j.enconman.2018.02.087.
Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5) , 1189-1232. doi: 10.1214/aos/1013203451
Ghodsi, Z., Kheirkhah Zarkesh, M.M., & Ghermezcheshmeh, B. (2021). Comparison of accuracy between Support Vector Machine and Random Forest Classifiers for land use and crop mapping using multi-temporal Sentinel-2 Images.
Iranian Remote Sensing and GIS, 12(4), 73-92.
doi: 10.52547/gisj.12.4.73 [In Persian]
Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation.
International Journal of Intelligent Systems Technologies and Applications, 11(2), 105-111.
doi: 10.6148/IJITAS.201806_11(2).0003.
Goldblatt, R., You, W., Hanson, G., & Khandelwal, A.K. (2016). Detecting the boundaries of urban areas in india: A dataset for pixel-based image classification in google earth engine.
Remote Sensing, 8(8), 634.
doi: 10.3390/rs8080634.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of statistical learning. 1st Edition: Springer. 536 pages.
Huang, Y., Reddy, K.N., Fletcher, R.S., & Pennington, D. (2018). UAV low-altitude remote sensing for precision weed management.
Weed Technology,
32(1), 2-6.
doi: 10.1017/wet.2017.89
Khosravi, I. (2024). Crop mapping from Landsat-8 images time series using Machine-Learning Methods (Case Study: Marvdasht in Fars Province).
Geography and Environmental Planning, 35(2), 45-66.
doi: 10.22108/gep.2024.138615.1601 [In Persian]
Li, S., Gong, Q., & Yang, S. (2019). A sustainable, regional agricultural development measurement system based on dissipative structure theory and the entropy weight method: a case study in Chengdu, China.
Sustainability, 11(19), 5313.
doi: 10.3390/su11195313
Li, W., Zhang, H., Li, W., & Ma, T. (2022). Extraction of winter wheat planting area based on multi-scale fusion.
Remote Sensing, 15(1), 164.
doi: 10.3390/rs15010164.
Li, Y., Zhu, X., Pan, Y., Gu, J., Zhao, A., & Liu, X. (2014). A Comparison of model-assisted estimators to infer land cover/use class area using satellite imagery.
Remote Sensing,
6(9), 8904-8922.
doi: 10.3390/rs6098904.
Saei Jamalabad, M., Akbari, A., & Mojardi, B. (2018). Winter wheat classification by multi-temporal optimized image analysis based on Random Forest algorithm.
Geomatic Science and Technology, 8(2), 133-150. dor:
20.1001.1.2322102.1397.8.2.9.8 [In Persian]
Moumni, A., & Lahrouni, A. (2021). Machine learning‐Based classification for crop‐type mapping using the fusion of high‐resolution satellite imagery in a Semiarid Area.
Scientifica, 2021(1), 8810279.
doi: 10.1155/2021/8810279.
Neetu, & Ray, S. (2019). Exploring machine learning classification algorithms for crop classification using Sentinel 2 data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 573-578. doi: 10.5194/isprs-archives-XLII-3-W6-573-2019.
Padma VVL, A., Suhail, M., Lutfullo, I., & Shodiyor, B. (2024). A comparative study of three supervised algorithms for mixed crop classification.
E3S Web of Conference, Pp. 590-595,
doi: 10.1051/e3sconf/202459001004.
Phalke, A. R., Özdoğan, M., Thenkabail, P.S., Erickson, T., Gorelick, N., Yadav, K., & Congalton, R.G. (2020). Mapping croplands of Europe, Middle East, Russia, and Central Asia using Landsat, Random Forest, and Google Earth Engine.
ISPRS Photogrammetry and Remote Sensing, 167, 104-122.
doi: 10.1016/j.isprsjprs.2020.06.022.
Pourhasan, N., Shah-Hosseini, R., & Seydi, S.T. (2021). Deep learning-based classification method for crop mapping using time series satellite images.
Geomatics Science and Technology, 11(1), 129-142. dor:
20.1001.1.2322102.1400.11.1.10.8 [In Persian]
Ramezani Etedali, H., & Ahmadi, M. (2024). Investigating the relationship between drought indices and maize yield using random forest method (Case study: Qazvin plain irrigation network).
Nivar, 126, 127-137.
doi: 10.30467/nivar.2024.467444.1299 [In Persian]
Rasti, S., Mahdavifardnh, M., Shaykh Ghaderi, H., Nasiri, A., & Taktaz, N.Z. (2022). Improving classification accuracy by combining multi-season images of Sentinel 1 and 2 in order to prepare a land use map in the cloud space of Google Earth Engine (Case study: Guilan province).
Geography and Human Relationships, 5(3), 357-373.
doi: 10.22034/gahr.2022.336692.1696 [In Persian]
Sahin, E.K. (2020). Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest.
SN Applied Sciences, 2(7), 1308.
doi: 10.1007/s42452-020-3060-1.
Salehi Shafa, N., Babazadeh, H., Aghayari, F., Saremi, A., Ghafouri, M.R., Safavi, M., & Panahdar, A. (2022). Formulation of an optimized Cropping pattern in order to manage groundwater level changes in Shahriar Plain.
Water and Soil Management and Modelling, 3(2), 217-235. doi:
10.22098/mmws.2022.11792.1169 [In Persian]
Sarker, I.H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160. doi: 10.1007/s42979-021-00592-x.
Seifi Majdar, R., & Ghassemian, H. (2017). A probabilistic SVM approach for hyperspectral image classification using spectral and texture features.
Remote Sensing, 38(15), 4265-4284.
doi: 10.1080/01431161.2017.1317941.
Sen, R., Goswami, S., & Chakraborty, B. (2019). Jeffries-Matusita distance as a tool for feature selection.
International Conference on Data Science and Engineering (ICDSE). doi:
10.1109/ICDSE47409.2019.8971800
Shao, Z., Ahmad, M.N., & Javed, A. (2024). Comparison of Random Forest and XGBoost classifiers using integrated optical and SAR features for mapping urban impervious surface.
Remote Sensing, 16(4), 665.
doi: 10.3390/rs16040665.
Simsek, F. (2025). Comparison of Agricultural Crop Type Classifications with Different Machine Learning Algorithms (RF-SVM-ANN-XGBoost) by Generating Ground Truth Data from Farmer Declaration Parcels.
Engineering and Geosciences, 10(2), 207-220.
doi: 10.26833/ijeg.1552141.
Sun, W., Yang, G., Chen, C., Chang, M., Huang, K., Meng, X., & Liu, L. (2020). Development status and literature analysis of China’s earth observation remote sensing satellites.
Remote Sensing, 24(5), 479-510. doi:
10.11834/jrs.20209464.
Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Munoz-Mari, J. (2011). A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics in Signal Processing, 5(3), 606-617. doi: 10.1109/JSTSP.2011.2139193.
Ugirumurera, J., Bensen, E.A., Severino, J., & Sanyal, J. (2024). Addressing bias in bagging and boosting regression models.
Scientific Reports, 14(1), 18452.
doi: 10.1038/s41598-024-68907-5.
Viskovic, L., Kosovic, I.N., & Mastelic, T. (2019, 19-21 Sept. 2019). Crop classification using multi-spectral and multitemporal satellite imagery with machine learning. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), doi: 10.23919/SOFTCOM.2019.8903738.
Wang, K., Cheng, L., & Yong, B. (2020). Spectral-similarity-based Kernel of SVM for hyperspectral image classification.
Remote Sensing, 12(13), 2154.
doi: 10.3390/rs12132154.
Wang, Y., Qi, Q., & Liu, Y. (2018). Unsupervised segmentation evaluation using area-weighted variance and Jeffries-Matusita distance for remote sensing Images.
Remote Sensing, 10(8), 1193.
doi: 10.3390/rs10081193.
Wuyun, D., Sun, L., Sun, Z., Chen, Z., Hou, A., Teixeira Crusiol, L. G., Reymond, L., Chen, R., & Zhao, H. (2022). Mapping fallow fields using Sentinel-1 and Sentinel-2 archives over farming-pastoral ecotone of Northern China with Google Earth Engine.
GIScience and Remote Sensing, 59(1), 333-353. doi:
10.1080/15481603.2022.2026638.
Yadav, S., Sharma, S., & Chaudhary, P. (2024) Review on advancement in machine learning and Deep Learning techniques for crop classification. SCRS Publication. doi: 10.56155/978-81-955020-7-3-53.
Yaramasu, R., Bandaru, V., & Pnvr, K. (2020). Pre-season crop type mapping using deep neural networks.
Computers and Electronics in Agriculture, 176, 105664.
doi: 10.1016/j.compag.2020.105664.
Zhan, W., Luo, F., Luo, H., Li, J., Wu, Y., Yin, Z., Wu, Y., & Wu, P. (2024). Time-series-based spatiotemporal fusion network for improving crop type mapping.
Remote Sensing, 16(2), 235.
doi: 10.3390/rs16020235.
Zheng, B., Myint, S.W., Thenkabail, P.S., & Aggarwal, R.M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data.
Applied Earth Observation and Geoinformation, 34, 103-112.
doi: 10.1016/j.jag.2014.07.002.