مدل سازی تأثیر کاربری اراضی بر سختی سله های فیزیکی در جنوب شرقی اهواز

نوع مقاله : پژوهشی

نویسندگان

1 استادیار/ بخش تحقیقات منابع طبیعی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

2 استادیار/ گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 استادیار/ بخش تحقیقات بیابان، مؤسسه تحقیقات جنگلها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

سله، بخش سخت بالای سطح خاک است که در اراضی غیرکشاورزی در مناطق خشک و بیابانی به‌عنوان یک عامل حفاظت از خاک در مقابل تنش برشی باد شناخته می‌شود. در این پژوهش، هدف بررسی سختی سله‌های فیزیکی و مقایسة نقش کاربری‌های مختلف در سختی سله است. به این‌منظور در کانون جنوب شرق اهواز و در منطقه‌ای با مساحت 100 هزار هکتار سه کاربری کشاورزی، نهال‌کاری و زمین بایر انتخاب شدند. به‌منظور اندازه‌گیری سختی سله از پنترومتر قابل حمل استفاده شد و به‌طور غیرمتمرکز و تصادفی در هر کاربری اقدام به اندازه‌گیری سختی در 90 نقطه شد. سپس سختی نهایی در هر نقطه با میانگین‌گیری از سه نقطه به‌دست آمد. میانگین سختی سله در نهال­‌کاری‌ها 3، در اراضی بایر 4.86 و در اراضی کشاورزی 3.4 مگاپاسکال است. سپس با استفاده از مدل خطی عمومی اقدام به مدل‌سازی سختی سله در کاربری‌های مورد مطالعه شد. در مرحلة اول تأثیر کاربری و بافت خاک بر سختی سله مورد بررسی قرار گرفت و نتایج نشان داد که کاربری اراضی و بافت خاک و نیز تعامل آن‌ها به‌ترتیب در سطح اطمینان 95 و 99 درصد در تغییر سختی سله تأثیرگذار هستند. هر دو عامل بافت خاک، کاربری اراضی و بر هم‌کنش این دو عامل بر واریانس سختی سله تأثیرگذار هستند، اما منشأ اصلی واریانس در سختی سله کاربری اراضی است و این عامل به‌تنهایی حدود 78 درصد واریانس را تبیین می‌نماید. به‌طور مجموع این عوامل به میزان 96 درصد واریانس متغیر وابسته را تبیین نموده و مدل ارائه شده در سطح 99 درصد معنا‌دار است. سپس به‌منظور بررسی تک عاملی کاربری اراضی، بافت خاک به‌عنوان کوواریانس در نظر گرفته شد و اثر آن بر سختی سله حذف شد. نتایج نشان داد که در میانگین سختی سله کاربری زمین بایر با کشاورزی و نهال‌کاری در سطح 99 درصد تفاوت معنا‌دار وجود دارد. مدل ارائه شده 86 درصد از واریانس سختی سله را تبیین می‌نماید و در بین عوامل با سطح معنا‌داری 99 درصد سختی سله در زمین بایر با 70 درصد تأثیر جزئی، بیش‌ترین نقش را در تبیین واریانس دارد. با تغییر کاربری از نهال‌کاری به زمین بایر سختی سطح خاک 50 درصد رشد می‌کند و با تغییر کاربری به اراضی کشاورزی 14 درصد افت می‌کند. در کاربری‌های کشاورزی و نهال‌کاری با افزایش تردد افراد و نیز ماشین‌آلات سنگین سله‌ها شکسته شده و به استقامت اولیه باز نمی‌گردند.

کلیدواژه‌ها

موضوعات


داوری دولت آبادی، عاطفه، قاضی فرد، اکبر، شیرانی، کوروش، و حیدری مورچه خورتی، فرزاد (1399). بررسی کاربردهای شورابه‌های دشت سگزی در کنترل فرسایش بادی. مهندسی و مدیریت آبخیز، 12(2)، 492-504. doi:10.22092/ijwmse.2019.122154.1496
 سیرجانی، الهام، ثامنی، عبدالمجید، موسوی، سید علی اکبر، و محمودآبادی، مجید (1396). ارتباط برخی ویژگی‌های خاک‌های استان فارس با شدت فرسایش بادی با استفاده از تونل باد صحرایی. پانزدهمین کنگره علوم خاک، اصفهان.
عنانانی، مائده، امیریان چکان، علیرضا، فرجی، محمد، یوسفی خانقاه، شهرام، و تقی‌زاده مهرجردی، روح‌الله (1396). استفاده از شاخص­های فرسایش­پذیری و سله سطحی در بررسی حساسیت خاک به فرسایش بادی. پانزدهمین کنگره علوم خاک ایران.
کلانتری، خلیل (1382). پردازش و تحلیل داده­ها در تحقیقات اجتماعی– اقتصادی با استفاده از نرم­افزار SPSS.  نشر شریف، 388 صفحه.
 
Belnap, J. (2003). The world at your feet: Desert biological soil crusts. Frontiers in Ecology and the Environment, 1(4), 181-189. doi:10.2307/3868062
Belnap, J., & Eldridge, D. (2001). Disturbance and recovery of biological soil crusts. In: Biological Soil Crusts: Structure, Function, and Management,  Springer Berlin Heidelberg. doi:10.1007/978-3-642-56475-8_27
Belnap, J., & Gillette, D.A. (1997). Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. Land Degradation & Development, 8(4), 355-362. doi:10.1002/(SICI)1099-      145X(199712)8:4<355::AID-LDR266>3.0.CO;2-H
Belnap, J., & Gillette, D.A. (1998). Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. Journal of Arid Environments, 39(2), 133-142. doi:10.1006/jare.1998.0388
Chepil, W.S. (1955). Factors that influence clod structure and erodibility of soil by wind: 111. calcium carbonate and decomposed organic matter. Soil Science, 77(6), 4473-480.
Davari Dolat Abadi, A., GHaazi Fard, A., Shirani, K., & Heydari, F. (2020). Investigation the application of saline waters in Segzi Plain with emphasis on the wind erosion control. Watershed Engineering and Management, 12(2), 492-504. doi:10.22092/ijwmse.2019.122154.1496 [In Persian]
Eldridge, D.J., & Leys, J.F. (2003). Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. Journal of Arid Environments, 53(4), 457-466. doi:10.1006/jare.2002.1068
Enanani, M., Amirian Chakan, A.R., Faraji, M., & Yosefi Khaneghah, Sh. (2017). Using erosivity indices and surface crusts in soil sensitivity to wind erosion. 15th National Soil Congress, Isfahan, Iran. [In Persian]
Fang, H.Y., Cai, Q.G., Chen, H., & Li, Q.Y. (2007). Mechanism of formation of physical soil crust in desert soils treated with straw checkerboards. Soil and Tillage Research, 93(1), 222-230. doi:10.1016/j.still.2006.04.006
Gillette, D.A., Adams, J., Muhs, D., & Kihl, R. (1982). Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air. Journal of Geophysical Research Atmospheres, 87(11), 9003-9016. doi:10.1029/JC087iC11p09003
Grünberger, O., Macaigne, P., Michelot, J.L., Hartmann, C., & Sukchan, S. (2008). Salt crust development in paddy fields owing to soil evaporation and drainage: Contribution of chloride and deuterium profile analysis. Journal of Hydrology, 348(1-2), 110-123. doi:10.1016/j.jhydrol.2007.09.039
Hagen, L., Skidmore, E., & Saleh, A. (1992). Wind erosion: Prediction of aggregate abrasion coefficients. Transactions of the ASAE. American Society of Agricultural Engineers, 35(6), 1847-1850. doi:10.13031/2013.28805
Houser, C.A., & Nickling, W.G. (2001). The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa. Earth Surface Processes and Landforms, 26(5), 491-505. doi:10.1002/esp.193
Kalantari Kh. (2003). Data processing and analysis in socio-economic research. Sharif Publication, 388 pages.
Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A. (2018). The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of The Total Environment, 610-611, 997-1009. doi:10.1016/j.scitotenv.2017.08.077
Kéry, M., & Royle, J.A. (2016). linear models, generalized linear models (glms), and random effects models: The components of hierarchical models. In: KÉRY, M., & ROYLE, J.A. (eds.), Applied Hierarchical Modeling in Ecology, Boston, Academic Press.
Khoshnood Motlagh, S., Sadoddin, A., Haghnegahdar, A., Razavi, S., Salmanmahiny, A., & Ghorbani, K. (2021). Analysis and prediction of land cover changes using the land change modeler (LCM) in a semiarid river basin, Iran. Land Degradation & Development, 32(10), 3092-3105. doi:10.1002/ldr.3969
Klose, M., Gill, T.E., Etyemezian, V., Nikolich, G., Ghodsi Zadeh, Z., Webb, N.P., & Van Pelt, R.S. (2019). Dust emission from crusted surfaces: Insights from field measurements and modelling. Aeolian Research, 40, 1-14. doi:10.1016/j.aeolia.2019.05.001
Leys, J.F., & Eldridge, D.J. (1998). Influence of cryptogamic crust disturbance to wind erosion on sand and loam rangeland soils. Earth Surface Processes and Landforms, 23(11), 963-974. doi:10.1002/(SICI)1096-9837(1998110)23:11<963::AID-ESP914>3.0.CO;2-X
Li, S., Li, C., & Fu, X. (2021). Characteristics of soil salt crust formed by mixing calcium chloride with sodium sulfate and the possibility of inhibiting wind-sand flow. Scientific Reports, 11(1), 9746. doi:10.1038/s41598-021-89151-1
Mousavi, F., Abdi, E., Ghalandarayeshi, S., & Page-Dumroese, D.S. (2021). Modeling unconfined compressive strength of fine-grained soils: Application of pocket penetrometer for predicting soil strength. CATENA, 196, 104890. doi:10.1016/j.catena.2020.104890
Pi, H., Huggins, D.R., & Sharratt, B. (2020). Influence of clay amendment on soil physical properties and threshold friction velocity within a disturbed crust cover in the inland pacific northwest. Soil and Tillage Research, 202, 104659. doi:10.1016/j.still.2020.104659
Pi, H., & Sharratt, B. (2019). Threshold friction velocity influenced by the crust cover of soils in the columbia plateau. Soil Science Society of America Journal, 83(1), 232-241. doi:10.2136/sssaj2018.06.0230
Pi, H., Webb, N.P., Huggins, D.R., & Sharratt, B. (2021). Influence of physical crust cover on the wind erodibility of soils in the inland pacific northwest, USA. Earth Surface Processes and Landforms, 46(8), 1445-1457. doi:10.1002/esp.5113
Rice, M.A., & Mcewan, I.K. (2001). Crust strength: A wind tunnel study of the effect of impact by saltating particles on cohesive soil surfaces. Earth Surface Processes and Landforms, 26(7), 721-733. doi:10.1002/esp.217
Rice, M.A., Mcewan, I.K., & Mullins, C.E. (1999). A conceptual model of wind erosion of soil surfaces by saltating particles. Earth Surface Processes and Landforms, 24(5), 383-392. doi:10.1002/(SICI)1096-9837(199905)24:5<383::AID-ESP995>3.0.CO;2-K
Rice, M.A., Willetts, B.B., & Mcewan, I.K. (1996). Wind erosion of crusted soil sediments. Earth Surface Processes and Landforms, 21(3), 279-293. doi:10.1002/(SICI)1096-9837(199603)21:3<279::AID-ESP633>3.0.CO;2-A
Rolston, D.E., Bedaiwy, M.N.A., & Louie, D.T. (1991). Micropenetrometer for in situ measurement of soil surface strength. Soil Science Society of America Journal, 55(2), 481. doi:10.2136/sssaj1991.03615995005500020031x
Sirjani, E., Sameni, A.M., Mousavi, S.A.A., & Mahmoudabadi, M. (2017). Relationship between soil features and wind erosion in Fars Province. 15th Natinal soil Congress, Isfahan Iran, Pp. 1-6. [In Persian]
Stovall, M.S., Ganguli, A.C., Schallner, J.W., Faist, A. M., Yu, Q., & Pietrasiak, N. (2022). Can biological soil crusts be prominent landscape components in rangelands? A case study from new mexico, USA. Geoderma, 410, 115658. doi:10.1016/j.geoderma.2021.115658
Thomas, A.D., & Dougill, A.J. (2007). Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: Implications for soil surface properties. Geomorphology, 85(1-2), 17-29. doi:10.1016/j.geomorph.2006.03.029
Webb, N.P., Mcgowan, H.A., Phinn, S.R., Leys, J.F., & Mctainsh, G.H. (2009). A model to predict land susceptibility to wind erosion in western queensland, australia. Environmental Modelling & Software, 24(2), 214-227. doi:10.1016/j.envsoft.2008.06.006
Webb, N.P., & Strong, C.L. (2011). Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Research, 3(2), 165-179. doi:10.1016/j.aeolia.2011.03.002
Yan, Y., Wu, L., Xin, X., Wang, X., & Yang, G. (2015). How rain-formed soil crust affects wind erosion in a semi-arid steppe in northern china. Geoderma, 249-250, 79-86. doi:10.1016/j.geoderma.2015.03.011
Yasrebi, B., Abbasi, H., Behnamfar, K., & Dinarvand, M. (2022). Land use/ land cover dynamic modeling using RS and GIS with emphasis on maximum likelihood rule and transition matrix. ECOPERSIA, 10(3), 191-202.
Zhang, Y.M., Wang, H.L., Wang, X.Q., Yang, W.K., & Zhang, D.Y. (2006). The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the gurbantunggut desert of northwestern china. Geoderma, 132(3), 441-449. doi:10.1016/j.geoderma.2005.06.008
Zobeck, T.M. (1991). Abrasion of crusted soils: influence of abrader flux and soil properties. Soil Science Society of America Journal, 55(4), 1091-1097. doi:10.2136/sssaj1991.03615995005500040033x