منابع
آذرم، برهان (1395). سری فوریه در علوم مهندسی مهندسی. ایدههای نو در علم و فناوری، 1(3)، 39-52.
جوان صمدی، سحر، ترابی آزاد، مسعود، و کرمی خانیکی، علی (1394). پیشبینی دمای سطح آب با استفاده از تحلیل فوریه در دریای خزر. مجله علوم و فنون دریایی، 14(4)، 84-97. doi: 10.22113/jmst.2016.12040
رهسپارمنفرد، رضا، کاردار، سعید، و شهروز تهرانی، ایرج (1399). بررسی اصول طراحی ساختمانهای مسکونی در اقلیم معتدل و مرطوب با رویکرد تهویه طبیعی (نمونه موردی: تحلیل بازشو شبیهسازی شده در بنای مسکونی در شهر آمل). علوم و تکنولوژی محیط زیست، 22(12)، 133-146.
صلاحی، برومند، و ملکی مرشت، رقیه (1394). پیشبینی و تحلیل تغییرات بارشهای ماهانۀ شهرستان اردبیل با استفاده از مدلهای آریما، اتورگرسیو و وینترز. آب و خاک، 29(5)، 1391-1450. doi: 10.22067/jsw.v29i5.33792
غیور، حسنعلی، و عساکره، حسین (1384). کاربرد مدلهای فوریه در تخمین دمای ماهانه و پیشبینی آینده آن، مطالعه موردی: دمای مشهد. پژوهشهای جغرافیایی، 77، 83-99.
فتحیان، فرشاد، فاخریفرد، احمد، دینپژوه، یعقوب، و موسوی ندوشنی، سیدسعید (1395الف). ارزیابی عملکرد مدلهای سری زمانی خطی (ARMA) و غیرخطی آستانهای (TAR) در مدلسازی جریان روزانه رودخانه (مطالعه موردی: رودخانههای حوضه بالادست سد زرینه رود). آب و خاک، 30(5)، 1440-1460.
فتحیان، فرشاد، فاخریفرد، احمد، دینپژوه، یعقوب، و موسوی ندوشنی، سیدسعید (1395ب). آزمایش ایستایی و غیرخطی بودن سریهای زمانی جریان روزانه بر اساس آزمونهای آماری مختلف (مطالعه موردی: رودخانههای حوضه بالادست سد زرینهرود). آب و خاک، 30 (4)، 1009-1024. doi: 10.22067/jsw.v30i4.44103
قدوسی، میثم، مرید، سعید، و دلاور، مجید (1393). مقایسه روشهای کاهش روند در سریهای زمانی دما و بارش. هواشناسی کشاورزی، 1(2)، 32-45.
مزارعی بهبهانی، امین، و جعفرزاده، محمدرضا (1392). تحلیل جریان ناپایدار در کانالهای باز با استفاده از سری فوریه. مجله هیدرولیک، 18 (1)، 63-79. doi: 10.30482/jhyd.2022.344351.1605
میرزایی، سیدیحیی، چیتسازان، منوچهر، و چینیپرداز، رحیم (1384). استفاده از تحلیل سری زمانی در تعیین زمان تأخیر رواناب در حوضه جهانبین. آب و فاضلاب، 15(3)، 53-59.
References
Arfken, G. (1985). Fourier Series. Ch. 14 in Mathematical Methods for Physicists, 3th. Orlando, FL: Academic Press, pp. 760-793.
Azaram, B. (2016). Fourier Series in engineering sciences. New Ideas in Science and Technology, 1(3), 39-52. [In Persian]
Asmat, A., Wahid, S. N. S., & Deni, S. M. (2021). Identifying rainfall patterns using Fourier series: A case of daily rainfall data in Sarawak, Malaysia. In Journal of Physics: Conference Series. IOP Publishing. doi: 10.1088/1742-6596/1988/1/012086
Banihabib, M.E., Bandari, R., & Valipour, M. (2020). Improving daily peak flow forecasts using hybrid Fourier-series autoregressive integrated moving average and recurrent artificial neural network models. Artificial Intelligence, 1(2), 17. doi:10.3390/ai1020017
Bouttier, F., & Marchal, H. (2024). Probabilistic short-range forecasts of high-precipitation events: optimal decision thresholds and predictability limits. Natural Hazards and Earth System Sciences, 24(8), 2793-2816. doi: 10.5194/nhess-24-2793-2024
Cinkus, G., Mazzilli, N., Jourde, H., Wunsch, A., Liesch, T., Ravbar, N., Chen, Z. & Goldscheider, N. (2023). When best is the enemy of good–critical evaluation of performance criteria in hydrological models. Hydrology and Earth System Sciences, 27(13), 2397-2411. doi: 10.5194/hess-27-2397-2023
Cardenas, C. E., Yang, J., Anderson, B. M., Court, L. E., & Brock, K.B. (2019). Advances in auto-segmentation. In Seminars in Radiation Oncology, 185-197. doi: 10.1016/j.semradonc.2019.02.001
Dinpashoh, Y., & Shafaei, S. (2018). Analysis of drought characteristics of Tabriz (1951-2015). Water and Soil Science, 28(3), 117-130. [In Persian]
Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Carver, R., Andrychowicz, M., Hickey, J., & Bell, A. (2022). Deep learning for twelve-hour precipitation forecasts. Nature Communications, 13(1), 1-10. doi: 10.1038/s41467-022-32483-x
Fathian, F., Fakheri-Fard, A., Dinpashoh, Y., & Mousavi Nadoushani, S.S. (2016a). Performance evaluation of linear (ARMA) and threshold nonlinear (TAR) time series models in daily river flow modeling (Case study: upstream basin rivers of Zarrineh Roud dam). Water and Soil, 30(5), 1440-1460. doi: 10.22067/jsw.v0i0.48161 [In Persian]
Fathian, F., Fakheri Fard, A., Dinpashoh, Y. & Mousavi Nadoshani, S.S. (2016b). Testing for Stationarity and Nonlinearity of Daily Streamflow Time Series Based on Different Statistical Tests (Case Study: Upstream Basin Rivers of Zarrineh Roud Dam). Water and Soil, 30(4), 1009-1024. doi: 10.22067/jsw.v30i4.44103 [In Persian]
Fathian, F., Fakheri Fard, A., Ouarda, T.B.M.J, Dinpashoh, Y., & Mousavi Nadoushani, S. (2019a) Modeling streamflow time series using nonlinear SETAR-GARCH models. Journal of Hydrology, 573, 82-97. doi.org/10.1016/j.jhydrol.2019.03.072
Fathian, F., Fakheri-Fard, A., Ouarda, T.B.M.J, Dinpashoh, Y., & Mousavi Nadoushani, S. (2019b). Multiple streamflow time series modeling using VAR–MGARCH approach. Stochastic Environmental Research and Risk Assessment, 33, 407–425. doi: 10.1007/s00477-019-01651-9
Foufoula-Georgiou, E., Guilloteau, C., Nguyen, P., Aghakouchak, A., Hsu, K. L., Busalacchi, A., Turk, F.J., Peters-Lidard, K., Oki, T., Duan, Q., Krajewski, w., Uijlenhoet, R., Barros, A., Kristetter, P., Logan, W., Hogue, T., Gupta, H., & Levizzani, V. (2020). Advancing precipitation estimation, prediction, and impact studies.
Bulletin of the American Meteorological Society,
101(9), E1584. doi:
10.1175/bams-d-20-0014.1
Ghazi, B., & Jeihouni, E. (2022). Projection of temperature and precipitation under climate change in Tabriz, Iran. Arabian Journal of Geosciences, 15(7), 621. doi: 10.1007/s12517-022-09848-z
García-Feal, O., González-Cao, J., Fernández-Nóvoa, D., Astray Dopazo, G., & Gómez-Gesteira, M. (2022). Comparison of machine learning techniques for reservoir outflow forecasting. Natural Hazards and Earth System Sciences Discussions, 22, 1-27. doi: 10.5194/nhess-22-3859-2022
Ghayur, H., & Asakere, H. (2005). Application of Fourier models in estimating monthly temperature and its future forecasting, Case study: Mashhad temperature. Geographical Research, 77, 83-99. [In Persian]
Ghodousi, M., Murid, S., & Delavar, M. (2014). Comparison of detrending methods in temperature and precipitation time series. Agricultural Meteorology, 1(2), 32-45. [In Persian]
Hasanpour Kashani, M., & Dinpashoh, Y. (2012). Evaluation of the efficiency of different estimation methods for missing climatological data. Stochastic Environmental Research and Risk Assessment, 26, 59–71. doi: 10.1007/s00477-011-0536-y
Hodson, T.O. (2022). Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development Discussions, 2022, 1-10. doi: 10.5194/gmd-15-5481-2022
Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., Qiao, Y., Shi, J., Li, W., & Cheng, G. (2016). New Fourier-series-based analytical solution to the conduction–convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. International Journal of Heat and Mass Transfer, 95, 815-823. doi: /10.1016/j.ijheatmasstransfer.2015.11.078
Javan Samadi, S., Torabi Azad, M., & Karami Khaniki, A. (2015). Forecasting water surface temperature using Fourier analysis in the Caspian Sea. Journal of Marine Science and Technology, 14(4), 84-97. doi: 10.22113/jmst.2016.12040 [In Persian]
Jou, P.H., & Mirhashemi, S.H. (2023). Frequency analysis of extreme daily rainfall over an arid zone of Iran using the Fourier series method. Applied Water Science, 13(1), 16. doi: 10.1007/s13201-022-01823-z
Kaur, J., Parmar, K.S., & Singh, S. (2023). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617-19641. doi: 10.1007/s11356-023-25148-9
Li, L. (1996). Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 13(9), 1870-1876. doi: 10.1364/JOSAA.13.001870
Liang, L., Zhao, L., Gong, Y., Tian, F., & Wang, Z. (2012). Probability distribution of summer daily precipitation in the Huaihe basin of China based on Gamma distribution. Acta Meteorologica Sinica, 26(1), 72-84. doi: 10.1016/j.atmosres.2020.105221
Lima, A.O., Lyra, G.B., Abreu, M.C., Oliveira-Júnior, J.F., Zeri, M., & Cunha-Zeri, G. (2021). Extreme rainfall events over Rio de Janeiro State, Brazil: Characterization using probability distribution functions and clustering analysis. Atmospheric Research, 247, 105221. doi: 10.1016/j.atmosres.2020.105221
Mah Hashim, N., Mohd Deni, S., Shariff, S.S.R., Tahir, W., & Jani, J. (2016). Identification of seasonal rainfall peaks at Kelantan using Fourier Series. In ISFRAM 2015: Proceedings of the International Symposium on Flood Research and Management 2015, p 169-179. Springer Singapore. doi: 10.1007/978-981-10-0500-8_14
Mazarei Behbahani, A., & Jafarzadeh, M. (2023). Analysis of unsteady flow in open channels using Fourier series. Journal of Hydraulics, 18(1), 63-79. doi: 10.30482/jhyd.2022.344351.1605 [In Persian]
McCuen, R.H., Knight, Z., & Cutter, A.G. (2006). Evaluation of the Nash–Sutcliffe efficiency index. Journal of Hydrologic Engineering, 11(6), 597-602. doi: 10.1061/(ASCE)1084-0699(2006)11:6(597)
Mirzaei, S., Chitsazan, M., & Chinipardaz, R. (2004). Using time series analysis to determine runoff delay time in Jahanbin Basin. Journal of Water and Wastewater, 15(3), 53-59. [In Persian]
Parviz, L., & Ghorbanpour, M. (2024). Assimilation of PSO and SVR into an improved ARIMA model for monthly precipitation forecasting. Scientific Reports, 14(1), 12107. doi: 10.1038/s41598-024-63046-3
Pollock, D. S. G., Green, R. C., & Nguyen, T. (Eds.). (1999). Handbook of Time Series Analysis, Signal Processing, and Dynamics. Elsevier.
Rahsparmanfard, R. Kardar, S., & Shahroz Tehrani, I. (2019). Studying the principles of designing residential buildings in temperate and humid climates with a natural ventilation approach (Case study: Simulated opening analysis in a residential building in Amol city). Environmental Science and Technology, 22(12), 133-146. [In Persian]
Ratner, B. (2009). The correlation coefficient: Its values range between + 1/− 1, or do they? Journal of Targeting, Measurement, and Analysis for Marketing, 17(2), 139-142. doi: 10.1057/jt.2009.5
Salahi, B., & Maleki Marsht, R. (2015). Forecasting and analyzing monthly precipitation changes in Ardabil city using ARIMA, autoregressive and Winters models. Water and Soil, 29(5), 2012-2013. doi: 10.22067/jsw.v29i5.33792 [In Persian]
Salas, J. D., Tabios III, G. Q., & Bartolini, P. (1985). Approaches to multivariate modeling of water resources time series 1. JAWRA Journal of the American Water Resources Association, 21(4), 683-708. doi: 10.1111/j.1752-1688.1985.tb05383.x
Singh, P., Joshi, S.D., Patney, R.K., & Saha, K. (2017). The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2199), 20160871. doi: 10.1098/rspa.2016.0871
Soleymanpour, R., Parsaee, N., & Banaei, M. (2015). Climate comfort comparison of vernacular and contemporary houses of Iran. Procedia-Social and Behavioral Sciences, 201, 49-61. doi: 10.1016/j.sbspro.2015.08.18
Wang, K., Li, J., Wang, W., Zhang, Z., Wang, X., Wang, Q., Yeh, T.C.J. and Hao, Y. (2023). Calibrating a model of depth to water table using Fourier series and Simpson numerical integration. Journal of Hydrology, 620, 129516. doi: 10.1016/j.jhydrol.2023.129516
Wang, Q., & Yuan, H. (2017). Failure rate prediction based on AR model and residual correction. In 2017 Second International Conference on Reliability Systems Engineering (ICRSE), p1-5. IEEE. doi: 10.1109/ICRSE.2017.8030786
Wirsing, K. (2020). Time frequency analysis of wavelet and Fourier transform. Wavelet Theory, 3-20.
Wolfram Language (2008). WeatherData. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeatherData.html
Wu, K., & Woo, M. K. (1989). Estimating annual flood probabilities using Fourier series method. JAWRA Journal of the American Water Resources Association, 25(4), 743-750. doi: 10.1111/j.1752-1688.1989.tb05388.x
Yan, C.W., Foo, S.Q., Trinh, V.H., Yeung, D.Y., Wong, K.H., & Wong, W.K. (2024). Fourier Amplitude and Correlation Loss: Beyond Using L2 Loss for Skillful Precipitation Nowcasting. Advances in Neural Information Processing Systems, 37, 100007-100041. doi:10.48550/arXiv.2410.23159
Zhang, Y., Shi, D., He, D., & Shao, D. (2021). Free Vibration Analysis of Laminated Composite Double‐Plate Structure System with Elastic Constraints Based on Improved Fourier Series Method. Shock and Vibration, 2021(1), 8811747. doi: 10.1155/2021/8811747