شاخص‌های آلایندگی فلزات سنگین در خاک‌های کشاورزی آبیاری شده با فاضلاب خام (مشگین‌شهر، اردبیل)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار/ گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانش‌آموخته کارشناسی ارشد/ گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استاد/ گروه خاک‌شناسی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

4 دانشیار/ گروه علوم و مهندسی خاک، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

خاک به‌عنوان مخزن مهم مواد غذایی و آلاینده، نقش مهمی در سلامت و پایداری اجتماعی-بوم‌شناختی ایفا می­ کند. افزایش آلودگی خاک ناشی از ورود فلزات سنگین است که در نتیجه عملیاتی نظیر کشاورزی، شهرسازی و صنعتی شدن رخ می‌دهد. هدف پژوهش حاضر، بررسی میزان فلزات سنگین و شاخص‌های آلودگی در خاک‌های آبیاری شده با فاضلاب خام در روستای بارزیل از توابع شهرستان مشگین‌شهر است. بدین‌منظور در منطقه مطالعاتی شبکه‌بندی منظم با ابعاد 250 متر انجام و 97 نمونة سطحی خاک (صفر تا 30 سانتی‌متر) برداشت شد. نمونه‌ها بعد از انتقال به آزمایشگاه خشک شده و از الک دو میلی‌متری عبور داده شدند. ویژگی‌های فیزیکی و شیمیایی خاک از جمله pH، EC، بافت، کربن آلی، کربنات کلسیم معادل خاک به روش‌های استاندارد و غلظت فلزات سنگین Cu، Zn، Cd، Ni، Cr، Pb، Fe و Mn توسط طیف­سنج جذب اتمی اندازه‌گیری شدند. شاخص‌های آلودگی شامل عوامل غنی‌شدگی، شاخص زمین‌انباشت، عامل آلودگی و شاخص بار آلودگی محاسبه شدند. میانگین غلظت سه فلز Zn، Cd و Pb از میانگین مرجع قاره‌ای آن‌ها بالاتر بود که نشان‌دهنده دخالت انسان در افزایش غلظت آن‌ها است. عامل غنی‌شدگی و مساحت تحت تأثیر آلودگی توسط فلز Cd در بین فلزات مطالعه شده بالاترین مقدار را داشت و Pb و Zn در مرتبه دوم و سوم قرار داشتند. کم‌ترین و بیش‌ترین مقدار شاخص زمین‌انباشت به‌ترتیب مربوط به Ni و Zn بود. از نظر این شاخص دو فلز Cd و Pb کلاس‌های آلودگی شدید و متوسط ایجاد کرده‌اند و سایر فلزات تقریبا بدون آلودگی بودند. کم‌ترین و بیش‌ترین مقدار عامل آلودگی به‌ترتیب به فلز Ni و Zn تعلق داشت. کلاس‌های آلودگی حاصل از دو شاخص زمین‌انباشت و عامل آلودگی مشابهت قابل‌توجهی داشت. مقدار شاخص بار آلودگی کم‌تر از یک بود که بیان‌کننده عدم وجود آلودگی در منطقه است. شاخص‌های انفرادی (EF، Igeo و CF) کلاس‌های آلودگی شدیدتری را نسبت به شاخص تجمعی PLI به‌وجود ‌آوردند. به‌عبارت دیگر استفاده از شاخص‌های تجمعی باعث نادیده شدن آلودگی شده ‌است. این امر می‌تواند تصمیم‌گیران را در برخورد با نوع و منشأ آلودگی به اشتباه انداخته و برخوردهای جدی را به‌دنبال نداشته‌ باشد.

کلیدواژه‌ها

موضوعات


افشاری، علی، خادمی، حسین، و دلاور، محمدامیر (1394). ارزیابی آلودگی فلزات سنگین با استفاده از فاکتور آلودگی در خاک اراضی با کاربری­های مختلف در بخش مرکزی استان زنجان. دانش آب و خاک، 25 (2/4)، 52-41.
رحیم‌پور، فاطمه، و عباس‌پور، رحیم­علی (1393). پهنه‌بندی آلودگی فلزات سنگین خاک با استفاده از روش‌های کریجینگ و توابع پایه شعاعی (مطالعه موردی: شهرستان هریس). اطلاعات جغرافیایی، 23(91)، 55-67. doi:10.22131/sepehr.2014.12862
روحانی شهرکی، فرزاد، مهدوی، رسول، و رضایی، مرضیه (1384). اثر آبیاری با پساب بر برخی خواص فیزیکی و شیمیایی خاک. آب و فاضلاب، (53)، 23-29.
صابری، عارف، ‌وهاب‌زاده کبریا، قربان، حجتی، سید‌محمد، و موسوی، سید‌رمضان (1402). تأثیر معدن‌کاری زغال‌سنگ بر انباشت سرب و روی و پراکنش مکانی آن‌ها در خاک سطحی منطقه کارمزد. مدل‌سازی و مدیریت آب و خاک، 3(3)، 56-71. doi:10.22098/MMWS.2022.11211.1106
عباس‌نژاد، احمد، احمدی افزادی، حسام، و عباس‌نژاد، بهنام (1402). ارزیابی استعداد آلودگی آب‌های زیرزمینی دشت سیرجان با استفاده از شاخص دراستیک در محیط GIS. مدلسازی و مدیریت آب و خاک، 3(1)، 200-214. doi:10.22098/MMWS.2022.11610.1146
میرزاشاهی، کامران، بازرگان، کامبیز، و بغوری، اسماعیل (1394). فاضلاب و کاربرد آن در کشاورزی. مؤسسه تحقیقات خاک و آب، نشریه فنی شماره 534، 18 صفحه.
 
References
Abbasnejad, A., Ahmadi Afzadi, H., & Abbasnejad, B. (2023). Pollution vulnerability assessment of groundwater in Sirjan Plain using DRASTIC and GIS. Water and Soil Management and Modeling, 3 (1), 200-2014. doi:10.22098/MMWS.2022.11610.1146 [In Persian]
Adelopo, A.O., Haris, P.I., Alo, B.I., Huddersman, K., & Jenkins, R.O. (2018). Multivariate analysis of the effects of age, particle size and landfill depth on heavy metals pollution content of closed and active landfill precursors. Waste Management, 78, 227–237. doi:10.1016/j.wasman.2018.05.040
Afshari, A., Khademi, H., & Delavar, M.A. (2015). Heavy metals contamination assessment in soils of different land uses in central district of Zanjan Province using contamination factor. Water and Soil Science, 24(4/2), 41-52. [In Persian]
Arisekar, U., Shakila, R.J., Shalini, R., Jeyasekaran, G., Keerthana, M., Arumugam, N., Almansour, A.I., & Perumal, K. (2022). Distribution and ecological risk assessment of heavy metals using geochemical normalization factors in the aquatic sediments. Chemosphere, 294, 133708. doi:10.1016/j.chemosphere.2022.133708
Balali, A.H., Gholami, S., Javanmardi, M.R., & Valipour, A. (2023). Assessment of heavy metal pollution in the soil of a construction and demolition waste landfill. Environmental Nanotechnology, Monitoring & Management, 20.100856. doi:10.1016/j.enmm.2023.100856
Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A.E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere, 241, 1-41. doi:10.1016/j.chemosphere.2019.125015
Chen, Z.F., Zhao, Y., Zhu, Y., Yang, X., Qiao, J., Tianc, Q., & Zhang, Q. (2009). Health risks of heavy metals in sewage-irrigated soils and edible seeds in Langfang of Hebei province, China. Journal of Science Food Agriculture, 90, 314-320. doi:10.1002/jsfa.3817
Chen, M., & Ma, L.Q. (2001). Comparison of three aqua regia digestion methods for twenty florida soils. Soil Science Society of America Journal, 87(2), 491-499. doi:10.2136/sssaj2001.652491x
Chen, Z., Zhao, Y., Chen, D., Huang, H., Zhao, Y., & Wu,Y. (2023). Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area,Henan Province, central China. China Geology, 6, 15-26. doi:10.31035/cg2023003
Cheng, B., Wang, Z., Yan, X., Yu, Y., Liu, L., Yi, G., Zhang, H., & Yang, X. (2023). Characteristics and pollution risks of Cu, Ni, Cd, Pb, Hg and As in farmland soil near coal mines. Soil and Environmental Health, 1, 1-9. doi:10.1016/j.seh.2023.100035
Da Silva, J.B., Abreu, I.M., De Oliveira, D.A.F., Hadlich, G.M., & Barbosa, A. (2020). Combining geochemical and chemometric tools to assess the environmental impact of potentially toxic elements in surface sediment samples from an urban river. Marine Pollution Bulletin, 155, 111146. doi:10.1016/j.marpolbul.2020.111146
Gee, W.G., & Bauder, J.W. (1986). Particle-size analysis. In: Methods of Soil Analysis, Part I, ASA, SSSA, Madison, USA.
Huajun, H., Xingzhong, Y., Guangming, Z., Huina, Z., Hui, L., & Zhifeng, L. (2011). Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge. Bioresource Technology, 102(22), 10346–10351. doi:10.1016/j.biortech.2011.08.117
Jackson, M.L. (1962). Soil Chemical Analysis. Constable and Co. Ltd., London.
Jones, J.B. (2001). Laboratory guide for conducting soil tests and plant analysis. Boca Raton, London, New York and Washington, D.C.CRC Press, 384 pages.
Keshavarzi, A., & Kumar, V. (2019). Ecological risk assessment and source apportionment of heavy metal contamination in agricultural soils of Northeastern Iran. International Journal of Environmental Health Research, 29, 544–560. doi:10.1080/09603123.2018.1555638
Kolawole, T.O., Olatunji, A.S., Jimoh, M.T., & Fajemila, O.T. (2018). Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria. Journal of Health Pollution, 8(19), 180906. doi:10.5696/2156-9614-8.19.180906
Kowalska, J.B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environ Geochem Health40, 2395–2420. doi:10.1007/s10653-018-0106-z
Kusin, F.M., Azani, N.N.M., Hasan, S.N.M.S., & Sulong, N.A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang. Malaysia and associated risk assessment. Catena, 165, 454-464. doi:10.1016/j.catena.2018.02.029
Larcheveque, M., Ballini, C., Korboulewsky, N., & Montès, N. (2006). The use of compost in afforestation of mediterranean areas: Effects on soil properties and young tree seedlings. Science of the Total Environment, 369, 220-230. doi:10.1016/j.scitotenv.2006.04.017
Liu, W.X., Shen, L.F., Liu, J.W., Wang, Y.W., & Li, S.R. (2007). Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology,79 (2), 209–213. doi:10.1007/s00128-007-9164-0
Long, Z., Zhu, H., Bing, H., Tian, X., Wang, Z., Wang, X., & Wu, Y. (2021). Contamination, sources and health risk of heavy metals in soil and dust from different functional areas in an industrial city of Panzhihua City, Southwest China. Journal of Hazardous Materials, 420,126638. doi:10.1016/j.jhazmat.2021.126638
Magdaleno, F.O., Villa, R.M., Saenz, E.M., Bolanos, D.C.O., & Olivas, A.L.B. (2011). Heavy metals in agricultural soils and irrigation wastewater of Mixquiahuala, Hidalgo, Mexico. African Journal of Agricultural Research, 6(24), 5505-5511. doi:10.5897/ajar11.414
Mirzashahi, K.K., & Bazargan, A.B. (2015). Sewage and its uses in agriculture. Soil and Water reaserches Institute, boullten 534. [In Persian]
Mojiri, A. (2011). Effects of municipal wastewater on physical and chemical properties of saline soil. Journal of Biological and Environmental Sciences, 5(14), 71-76.
Munir, J., Rusan, M., Hinnawi, S., & Rousan, L. (2007). Long-term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Soil Science Society of American Journal, 215, 143-152. doi:10.1016/j.desal.2006.10.032
Nelson, D.W., & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Pp.153-188, In: Sparks, DL. (ed.), Methods of Soil Analysis, Part 3: Chemical Methods, SSSA Book Series Number 5, Soil Science Society of America, Madison, WI.
Rachwał, M., Kardel, K., Magiera, T., & Bens, O. (2017). Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma, 295, 10-21. doi:10.1016/j.geoderma.2017.02.007
Rahimpour, F., & Abaspour, R.A. (2014). Mapping concentrations of heavy metals in soils using Kriging and RBF Case study: Harris Township. Journal Management System 23, 55-67. doi:10.22131/sepehr.2014.12862 [In Persian]
Rohani Shahraki, F., Mahdavi, R., & Rezayi, M. (2005). Effect of irrigation treatments on some soil physical and hemical properties. Journal of Water and Wastewater, 53, 23-29. [In Persian]
Saberi, A., Vahabzadeh Kebria, Gh., Hojjati, S.M., & Mosavi, S.R. (2023). The effect of coal mining on the accumulation of Pb and Zn and their spatial distribution in the surface soil of Komarzd. Water and Soil Management and Modeling, 3(3), 57-71. doi:10.22098/MMWS.2022.11211.1106 [In Persian]
Sellami, S., Zeghouan, O., Dhahri, F., Mechi, L., Moussaoui, Y., & Kebabi, B. (2022). Assessment of heavy metal pollution in urban and peri-urban soil of Setif city (High Plains, eastern Algeria), Environmental Monitoring and Assessment, 194(2), 1–17. doi:10.1007/s10661-022-09781-4
Shammi, S.A., Salam, A., & Khan, M.A.H. (2021). Assessment of heavy metal pollution in the agricultural soils, plants, and in the atmospheric particulate matter of a suburban industrial region in Dhaka. Environmental Monitoring and Assessment, 193(2).
Sharma, R.K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258-266. doi:10.1016/j.ecoenv.2005.11.007
Singh, R.P., & Agrawal, M. (2008). Potential benefits and risks of landapplication of sewage sludge. Waste Management, 28(2), 347-358. doi:10.1016/j.wasman.2006.12.010
Taylor, S.R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(8), 1273–1285. doi:10.1016/0016-7037(64)90129-2
Weissmannova, H.D., & Pavlovsky, J. (2017). Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environmental Monitoring and Assessment, 189(12), 616. doi: 10.1007/s10661-017-6340-5
Zerizghi, T., Guo, Q., Tian, L., Wei, R., & Zhao, C. (2022). An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Science of the Total Environment, 814, 152653. doi:10.1016/j.scitotenv.2021.152653
Zhang, H., Luo, Y., Makino, T., Wu, L., & Nanzyo, M. (2013). The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust. Journal of Hazardous Materials, 248249, 303–312.  doi:10.1016/j.jhazmat.2013.01.019
Zhang, Y., Zhang, H., Zhang, Z., Liu, C., Sun, C., Zhang, W., & Marhaba, T. (2018). pH Effect on Heavy Metal Release from a Polluted Sediment. Journal of Chemistry, 1–7. doi:10.1155/2018/7597640
Zukowska, J., & Biziuk, M. (2008). Methodological evaluation of method for dietary heavy metal intake. Journal of Food Science, 73(2), 21-29. doi:10.1111/j.1750-3841.2007.00648.x