ارزیابی کارائی روش‌های کاهش پارامترها در بهبود دقت مدل‌سازی شاخص کیفی آب در رودخانة قزل اوزن با استفاده از الگوریتم‌های یادگیری ماشین

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 دانشجوی دکتری تخصصی، گروه مهندسی کامپیوتر، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

3 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

آگاهی از کیفیت آب یکی از نیازهای مهم در برنامه‌ریزی، توسعه و حفاظت از منابع آب به‌شمار می‌رود. تعیین کیفیت آب برای مصارف مختلف از جمله آبیاری و شرب در مناطق مختلف ضروری است. استفاده از روش‌های مدرن داده‌کاوی، می‌توانند رویکرد مناسبی برای پیش‌بینی و طبقه‌بندی کیفیت آب ارائه دهند. در پژوهش حاضر کیفیت آب رودخانة قزل ‌اوزن در ایستگاه‌ قره‌گونئی روستایی از توابع بخش حلب شهرستان ایجرود در استان زنجان مورد ارزیابی قرار گرفت. در این راستا شاخص کیفی آب شرب (WQI) با استفاده از پارامترهای شیمیایی سختی کل، قلیائیت (pH)، هدایت الکتریکی، کل مواد جامد محلول، کلسیم، سدیم، منیزیم، پتاسیم، کلر، کربنات، بی‌کربنات و سولفات در دورة آماری ۲۱ساله (1398-1378) محاسبه شد. با توجه ‌به تعداد نسبتاً زیاد پارامترها از روش‌های تحلیل ‌مؤلفه‌های اصلی و تحلیل ‌مؤلفه‌های مستقل برای کاهش ابعاد استفاده شد. سپس از الگوریتم‌های مختلف یادگیری ماشین شامل درخت تصمیم، رگرسیون لجستیک و شبکة عصبی مصنوعی پرسپترون چندلایه برای مدل‌سازی شاخص کیفی آب استفاده شد. با استفاده از این روش‌ها تعداد پارامترهای مورد نیاز برای محاسبة شاخص کیفی از 12 به دو کاهش یافت. کاهش ابعاد داده‌ها باعث صرفه‌جویی در زمان نمونه‌برداری، پایش نمونه‌ها و تعیین کیفیت آب شده و هزینه‌های مورد نیاز برای مدل‌سازی را به مقدار قابل‌توجهی کاهش می‌دهد. نتایج نشان داد از بین روش‌های کاهش بعد روش تحلیل ‌مؤلفه‌های اصلی نسبت به روش تحلیل ‌مؤلفه‌های مستقل کارایی بهتری می‌تواند داشته باشد. هم‌چنین، نتایج نشان داد که از بین روش‌های مورد استفاده در مدل‌سازی، روش شبکة عصبی پرسپترون چندلایه با استفاده از تحلیل ‌مؤلفه‌های اصلی با ضریب تبیین 99/0، جذر میانگین مربعات خطا برابر 79/44 و ضریب ویلموت اصلاح شده برابر 99/0 بهترین عملکرد را داشته است. با توجه ‌به این‌که ابعاد زیاد داده در بررسی و مدل‌سازی کیفیت آب باعث پیچیدگی و زمان بر بودن فرآیند مدل‌سازی می‌‌شود، لذا توصیه می‌‌شود از روش‌های کاهش بعد مانند تحلیل مولفه‌های اصلی برای کاهش ابعاد داده استفاده شود. نتایج حاصل از بررسی‌ها برتری روش تحلیل مؤلفه‌های اصلی نسبت به روش تحلیل مؤلفه‌های مستقل را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


References
Ajayram, K.A., Jegadeeshwaran, R., Sakthivel, G., Sivakumar, R., Patange, A.D. (2021). Condition monitoring of carbide and non-carbide coated tool insert using decision tree and random tree – A statistical learning. Materials Today: Proceedings, doi:10.1016/j.matpr.2021.02.065.
Al-Mukhtar, M., & Al-Yaseen, F. (2019). Modeling water quality parameters using data-driven models, a case study Abu-Ziriq marsh in south of Iraq. Hydrology, 6(1), 24. doi:10.3390/
hydrology6010024
 Boyacioglu, H. (2007). Development of a water quality index based on a European classification scheme. Water SA, 33(1). doi: 10.4314/wsa.
v33i1.47882
Bailey, D., & Solomon, G. (2004). Pollution prevention at ports: clearing the air. Environmental Impact Assessment review24(7-8), 749-774. doi:10.1016/j.eiar.2004.06.005
Chen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., & Ren, H. (2020). Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research, 171, 115454. doi:10.1016/j.watres.
2019.115454.
Coutsias, E.A., Seok, C., & Dill, K.A. (2004). Using quaternions to calculate RMSD. Journal of computational chemistry25(15), 1849-1857. doi:10.1002/jcc.20110
Daffertshofer, A., Lamoth, C.J., Meijer, O.G., & Beek, P.J. (2004). PCA in studying coordination and variability: a tutorial. Clinical biomechanics19(4), 415-428. doi:10.1016/
j.clinbiomech.2004.01.005
Denil, M., Matheson, D., de Freitas, N. (2014). Narrowing the gap: Random forests in theory and in practice. Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 32(1), 665-673. doi:10.48550/
arXiv.1310.1415
Dezfooli, D., Mooghari, S.M.H., Ebrahimi, K., & Araghinejad, S. (2017). Water quality classification based on minimum qualitative parameter (Case Study: Karun River). Journal Of Natural Environment, 70(3), 583-595. https://sid.ir/paper/195087/en. [In Persian]
Gorde, S.P., & Jadhav, M.V. (2013). Assessment of water quality parameters: a review. Journal of Engineering Research and Applications3(6), 2029-2035. https://www.ijera.com/papers/Vol3_
issue6/LV3620292035.pdf
Hintze, J.L. & Nelson, R.D. (1998). Violin plots: A box plot-density trace synergism. The American Statistician, 52, 181-184. doi: 10.2307/268547
Islam Khan, D.S., Islam, N., Uddin, J., Islam, S., Nasir, M.K. (2021). Water quality prediction and classification based on principal component regression and gradient boosting classifier approach. Journal of King Saud University-Computer and Information Sciences, 34(8), 4773-4781. doi: 10.1016/ j.jksuci.2021.06.003.
Icaga, Y. (2007). Fuzzy evaluation of water quality classification. Ecological Indicators, 7(3), 710-718. doi:10.1016/j.ecolind.2006.08.002
Jie, Z., Xiaoli, L., & Juntao, L. (2016). Fresh food distribution center storage allocation strategy analysis based on optimized entry-item-quantity-ABC. International Journal on Data Science Technology, 36-40. doi: 10.11648/j.ijdst.20160
203.11
Johnson, O., Akinola, S., Aboyeji, O., Adedeji, A. (2021). Comparison between fuzzy logic and water quality index methods: A case of water quality assessment in Ikare community, Southwestern Nigeria. Environmental Challenges, 3, 1-10. doi:10.1016/j.envc.2021.100038.
Kalmegh, S. (2015). Analysis of WEKA data mining algorithm REPTree, simple cart and randomtree for classification of Indian News. International Journal of Innovative Science, Engineering & Technology, 2, 438-446.
Khoi, D.N., Quan, N.T., Linh, D.Q., Nhi, P.T.T., Thuy, N.T.D. (2022). Using machine learning models for predicting the water quality index in the La Buong River, Vietnam. Water, 14. doi: 10.3390/w14101552.
Khalili, R., Montaseri, H., Motaghi, H., & Jalili, M. B. (2021). Water quality assessment of the Talar River in Mazandaran Province based on a combination of water quality indicators and multivariate modeling. Water and Soil Management and Modelling, 1(4), 30-47. doi: 10.22098/mmws.2021.9322.1033  [In Persian]
La Valley, M.P. (2008). Logistic regression. Circulation117(18), 23952399. doi:10.1161/
CIRCULATIONAHA.106.682658
Massoud, M.A. (2012). Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184, 4151-4160. doi:10.1007
/s10661-011-2251-zt
Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta numerica8, 143-195. doi:10.1017/S0962492900002919.
Soleimanpour, S.M., Mesbah, S.H., Hedayati, B. (2018). Application of CART decision tree data mining to determine the most effective drinking water quality factors (case study: Kazeroon plain, Fars province). Iranian Journal of Health and Environment, 11(1), 1-14. http://ijhe.tums.ac.ir/article-1-5881-en.html. [In Persian]
Sattari, M.T., Feizi, H., Colac, M., Ozturk, A., Ozturk, F., & Apaydin, H. (2021). Surface water quality classification using data mining approaches Irrigation along the Aladag River. Irrigation and Drainage, 70(5), 1227–1246. doi:10. 1002/ird.2594.
Tripathi, M., Singal, S. (2019). Use of principal component analysis for parameter selection for development of a novel water quality index: A case study of river Ganga India. Ecological Indicators, 96, 430-436. doi:10.1016/j.ecolind.2018.09.025.
Taylor, K.E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres106(7), 7183-7192. doi:10.1029/2000JD900719
Willmott, C.J., Robeson, S.M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology32(13), 2088-2094. doi:10.1002/joc.2419
World Health Organization. (2010). Hardness in drinking-water: background document for development of WHO guidelines for drinking-water quality (No. WHO/HSE/WSH/10.01/10).
Yusri, H., Ab Rahim, A., Hassan, S., Halim, I., & Abdullah, N. (2022). Water quality classification using SVM and XGBoost method, IEEE 13th Control and System Graduate Research Colloquium (ICSGRC). 231-236. doi: 10.1109/ICSGRC55096.2022.9845143.
Zeinalzadeh, K., & Rezaei, E. (2017). Determining spatial and temporal changes of surface water quality using principal component analysis. Journal of Hydrology: Regional Studies13, 1-10. doi:10.1016/j.ejrh.2017.07.002