References
Amani Machiani, M., Javanmard, A., Morshedloo, M.R. & Maggi, F. (2018). Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean.
Industrial Crops and Products, 111, 74
3-754. doi:
10.1016/j.indcrop.2017.11.052.
Bai, W., Sun, Z., Zheng, J., Du, G., Feng, L., Cai, Q., Yang, N., Feng, C., & Zhang, L. (2016). Mixing trees and crops increases land and water use efficiencies in a semi-arid area.
Agricultural Water Management,
178, 281-290
. doi:10.1016/j.agwat.2016.10.007.
Bedoussac, L., & Justes, E. (2010). Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop.
Plant and Soil, 330, 37-54. doi:
10.1007/s11104-010-0303-8.
Belay, D., Schulthess, F., & Omwega, C. (2009). The profitability of maize–haricot bean intercropping techniques to control maize stem borers under low pest densities in Ethiopia.
Phytoparasitica,
37, 43-50. doi:
10.1007/s12600-008-0002-7.
Brooker, R.W., Bennett, A.E., Cong, W.F., Daniell, T.J., George, T.S., Hallett, P.D., Hawes, C., Iannetta, P.P., Jones, H.G., Karley, A.J. & Li, L. (2015). Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.
New Phytologist, 206(1), 107-117.
doi: 10.1111/nph.13132.
Chapagain, T., & Riseman, A. (2014). Barley–pea intercropping: Effects on land productivity, carbon and nitrogen transformations.
Field Crops Research,
166, 18-25.
doi:10.1016/
j.fcr.2014.06.014.
Chen, G., Kong, X., Gan, Y., Zhang, R., Feng, F., Yu, A., Zhao, C., Wan, S., & Chai, Q. (2018). Enhancing the systems productivity and water use efficiency through coordinated soil water sharing and compensation in strip-intercropping.
Scientific Reports, 8(1),
1-11. doi:
10.1038/s41598-018-28612-6.
Echarte, L., Della Maggiora, A., Cerrudo, D., Gonzalez, V.H., Abbate, P., Cerrudo, A., Gonzalez, V.H., Abbate, P., Sadras, V.O., & Calvino, P. (2011). Yield response to plant density of maize and sunflower intercropped with soybean.
Field Crops Research,
121(3), 423-429.
doi: 10.1016/j.fcr.2011.01.011.
Gitari, H.I., Gachene, C.K., Karanja, N.N., Kamau, S., Nyawade, S., Sharma, K., & Schulte-Geldermann, E. (2018). Optimizing yield and economic returns of rain-fed potato (Solanum tuberosum L.) through water conservation under potato-legume intercropping systems.
Agricultural Water Management,
208, 59-66.
doi:10.1016/j.agwat.2018.06.005.
Hu, F., Feng, F., Zhao, C., Chai, Q., Yu, A., Yin, W., & Gan, Y. (2017). Integration of wheat-maize intercropping with conservation practices reduces CO
2 emissions and enhances water use in dry areas.
Soil and Tillage Research,
169, 44-53.
doi:10.1016
/j.still.2017.01.005.
Khajeh Khezri , A., Estakhroeih, A.R., & Kermani, S.G. (2018). Evaluating the effects of alternative and regulated deficit irrigation on yield and some components in intercropping (Sorghum–Red bean).
Journal of Irrigation Sciences and Engineering,
41(2), 77-92. doi:
10.22055/jise.2018.13614. [In Persian]
Khatamipour, M., Asgharipour, M.R., & Sirousmehr, A.R. (2014). Intercropping benefits of foxtail millet with mung bean as influenced by application of different manure levels.
Journal of Agricultural Science and Sustainable Production.
24(3), 75-86.
https://journals.tabrizu.ac.ir/article_2731.html. [In Persian]
Kanton, R.A.L., & Dennett, M.D. (2004). Water uptake and use by morphologically contrasting maize/pea cultivars in sole and intercrops in temperate conditions.
Experimental Agriculture,
40(2), 201-214.
doi:10.1017/S0014479703001571.
Kumawat, A., Bamboriya, S.D., Meena, R.S., Yadav, D., Kumar, A., Kumar, S., Raj, A., & Pradhan, G. (2022). Legume-based inter-cropping to achieve the crop, soil, and environmental health security.
Advances in Legumes for Sustainable Intensification, 307-328. doi: 10.1016/B978-0-323-85797-0.00005-7.
Lithourgidis, A.S., Vlachostergios, D.N., Dordas, C. A., & Damalas, C.A. (2011). Dry matter yield, nitrogen content, and competition in pea–cereal intercropping systems.
European Journal of Agronomy,
34(4), 287-294.
doi:10.1016/j.eja.2011.02.007.
Liu, M., Wang, G., Liang, F., Li, Q., Tian, Y., & Jia, H. (2022). Optimal irrigation levels can improve maize growth, yield, and water use efficiency under drip irrigation in northwest China.
Water,
14(23
), 3822. doi:10.3390/
w14233822.
Liu, X., Rahman, T., Song, C., Yang, F., Su, B., Cui, L., Bu, W., & Yang, W. (2018). Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping.
Field Crops Research,
224, 91-101.
doi:10.1016/j.fcr.2018.05.010.
Mead, R., & Willey, R. (1980). The concept of a land equivalent ratio’and advantages in yields from intercropping.
Experimental Agriculture 16(3), 217-228.
doi:10.1017/S0014479
700010978.
Morris, R.A., & Garrity, D.P. (1993). Resource capture and utilization in intercropping: water.
Field Crops Research,
34(3-4), 303-317.
doi:10.1016/0378-4290(93)90119-8.
Musa, M., Leitch, M.H., Mazher, I., & Fayyaz-ul-Hassan, S. (2010). Spatial arrangement affects growth characteristics of barley-pea intercrops. International Journal of Agriculture and Biology, 12(5), 685-690. doi: 1814–9596 09–440/MFA/2010/12–5–685–690.
Nassary, E.K., Baijukya, F., & Ndakidemi, P.A. (2020). Productivity of intercropping with maize and common bean over five cropping seasons on smallholder farms of Tanzania.
European Journal of Agronomy,
113, 125964.
doi:10.1016/j.eja.2019.125964.
Raza, M.A., Bin Khalid, M.H., Zhang, X., Feng, L. Y., Khan, I., Hassan, M.J., Ahmed, M., Ansar, M., Chen, Y.K., Fan, Y.F., & Yang, W. (2019). Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems.
Scientific Reports,
9(1), 4947. doi:
10.1038/s41598-019-41364-1.
Raza, M.A., Gul, H., Wang, J., Shehryar Yasin, H., Qin, R., Hayder Bin Khalid, M., Muhammd Naeem, M., Feng, L.Y., Iqbal, N., Gitari, H., Ahmad, S., (2021). Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan.
Journal of Cleaner Production, 308, 127282.
doi:10.1016/j.jclepro.2021.127282.
Ren, J., Zhang, L., Duan, Y., Zhang, J., Evers, J.B., Zhang, Y., Su, Z., & Van Der Werf, W. (2019). Intercropping potato (Solanum tuberosum L.) with hairy vetch (Vicia villosa) increases water use efficiency in dry conditions.
Field Crops Research,
240, 168-176.
doi:10.1016/j.fcr.2018.12.002.
Salama, H., El-Karamity, D.E.S., & Nawar, A.I. (2016). Additive intercropping of wheat, barley, and faba bean with sugar beet: Impact on yield, quality and land use efficiency.
Egyptian Journal of Agronomy, 38(3), 413-430. doi:
10.21608/AGRO.2016.1277.
Sezen, S.M., Yazar, A., & Tekin, S. (2011). Effects of partial root zone drying and deficit irrigation on yield and oil quality of sunflower in a Mediterranean environment.
Irrigation and Drainage,
60(4), 499-508.
doi:10.1002/ird.607.
Takim, F.O. (2012). Advantages of maize-cowpea intercropping over sole cropping through competition indices. Journal of Agriculture and Biodiversity Research, 1(4), 53-59. http://www.onlineresearchjournals.org/JABR.
Tanwar, S.P.S., Rao, S.S., Regar, P.L., Datt, S., Kumar, P., Jodha, B.S., Santra, P., Kumar, R., & Ram, R. (2014). Improving water and land use efficiency of fallow-wheat system in shallow Lithic Calciorthid soils of arid region: Introduction of bed planting and rainy season sorghum–legume intercropping.
Soil and Tillage Research,
138, 44-55.
doi:10.1016/j.still.2013.12.005.
Temesgen, A., Fukai, S., & Rodriguez, D. (2015). As the level of crop productivity increases: Is there a role for intercropping in smallholder agriculture.
Field Crops Research,
180, 155-166.
doi: 10.1016/j.fcr.2015.06.003.
Teng, Y.Y., Zhao, C., Chai, Q., Hu, F.L., & Feng, F.X. (2016). Effects of postponing nitrogen topdressing on water use characteristics of maize-pea intercropping system.
Acta Agronomica Sinica,
42(3), 446-455. doi:
10.3724/SP.J.1006.2016.00446.
Wang, J.Y., Mo, F., Nguluu, S.N., Zhou, H., Ren, H.X., Zhang, J., Kariuki, C.W., Gicheru, P., Kavaji, L., Xiong, Y.C., & Li, F.M. (2016). Exploring micro-field water-harvesting farming system in dryland wheat (Triticum aestivum L.): An innovative management for semiarid Kenya.
Field Crops Research,
196, 207-218.
doi.org/10.1016/j.fcr.2016.07.001
Wang, W., Li, M.Y., Gong, D.S., Zhou, R., Khan, A., Zhu, Y., Zhu, H., Abrar, M., Zhu, S.G., Wang, B.Z. & Song, C. (2022). Water use of intercropped species: maize-soybean, soybean-wheat and wheat- maize.
Agricultural Water Management,
269, 107690.
doi:10.1016/j.agwat.2022.107690.
Yin, W., Chai, Q., Zhao, C., Yu, A., Fan, Z., Hu, F., Fan, H., Guo, Y. & Coulter, J.A., (2020). Water utilization in intercropping: A review.
Agricultural Water Management,
241, 106335.
doi:10.1016/j.agwat.2020.106335.
Yin, W., Chen, G.P., Feng, F.X., Guo, Y., Hu, F.L., Chen, G.D., Zhao, C., Yu, A.Z., & Chai, Q. (2017). Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment.
Field Crops Research,
204, 42–51.
doi:10.1016/j.fcr.2017.01.005.
Yin, W., Fan, Z.L., Hu, F.L., Fan, H., Yu, A.Z., Zhao, C., & Chai, Q. (2019a). Straw and plastic mulching enhances crop productivity via optimizing interspecific interactions of wheat–maize intercropping in arid areas.
Crop Science,
59(5), 2201-2213.
doi:10.2135/ cropsci2019.02.0082.
Yin, W., Fan, Z.L., Hu, F.L., Yu, A.Z., Zhao, C., Chai, Q., & Coulter, J.A. (2019b). Innovation in alternate mulch with straw and plastic management bolsters yield and water use efficiency in wheat-maize intercropping in arid conditions.
Scientific Reports,
9(1), 6364. doi:
10.1038/s41598-019-42790.
Yin, W., Yu, A., Chai, Q., Hu, F., Feng, F., & Gan, Y. (2015). Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%.
Agronomy for Sustainable Development,
35(2), 815-825. doi:
10.1007/s13593-015-0286-1.