تحلیل عدم قطعیت در شبیه‌سازی دبی مؤثر نشت از سدهای خاکی با الگوریتم مونت‌کارلو و یادگیری ماشین

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار/ گروه مهندسی عمران آب، دانشکدة مهندسی عمران، دانشگاه تبریز، تبریز، ایران

2 دانش‌آموخته دکتری/ گروه مهندسی عمران آب، دانشکدة مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

عدم قطعیت‌های ناشی از ماهیت پیچیدة خاک موجب گسترش استفاده از تحلیل‌های احتمالاتی در طراحی سازه‌های خاکی شده است و در برخی از کشورها آیین‌نامه‌های طراحی چنین سازه‌هایی را تغییر داده است. هدف پژوهش حاضر تحلیل تراوش با فرض عدم قطعیت در هدایت هیدرولیکی خاک است که در شرایط مختلف هندسی سد مورد بررسی قرار گرفته است. در این پژوهش ترکیب روش اجزای محدود به‌عنوان روش عددی محاسباتی در کنار یادگیری ماشینی (ML) برای بررسی مسأله تراوش از سد خاکی استفاده ‌شده است که تحلیل عدم قطعیت در زبان برنامه‌نویسی فرترن با الگوریتم شبیه‌سازی مونت‌کارلو (MCS) پیاده‌سازی شده و با تعداد نمونة 2000 برای هر زیرمدل اجرا شده و تابع توزیع فراوانی برای هر مدل استخراج شد. سپس، نتایج احتمالاتی با رگرسیون بردار پشتیبان (SVR) و برنامه‌نویسی بیان ژن (GEP) تحلیل شدند که مدل درختی برای تراوش نیز ارائه شد. برای بررسی جریان نشت به‌صورت بی‌بعد از مؤلفة دبی مؤثر نشت (ESD) استفاده شد که بیان‌گر جریان دبی خروجی با در نظر گرفتن هندسة سد و ضریب هدایت هیدرولیکی آن است. مدل‌سازی داده‌های حاصل از کد فرترن به دو روش برنامه‌نویسی بیان ژن و رگرسیون بردار پشتیبان انجام شد. ضریب همبستگی مدل SVR و GEP به‌ترتیب 96/0 (در سه حالت داده‌های آزمون، آموزش و کل) و 91/0 و ریشة میانگین مربعات خطا (RMSE) در هر دو مدل نزدیک 01/0 به‌دست آمد که بیان‌گر این است که دو مدل مذکور با دقت مناسبی قادر به پیش‌بینی دبی مؤثر هستند و نتایج مدل SVR نسبت به مدل GEP به نتایج تحلیل ناشی از اجزای محدود، تطابق بیش‌تری دارد.

کلیدواژه‌ها

موضوعات


References
Ahmed, S.A., Revil, A., Bolève, A., Steck, B., Vergniault, C., Courivaud, J.R., & Abbas, M. (2020). Determination of the permeability of seepage flow paths in dams from self-potential measurements. Engineering Geology, 268, 105514. doi: 10.1016/j.enggeo.2020.105514
Akhavan Giglou, K., Kheiry, M., Ahmadpari, H., Abbasi, S., & Kalateh, F. (2023). Investigating virtual water content and physical and economic water productivity indicators in crops (Case study: Moghan irrigation network, Ardabil province). Water and Soil Management and Modelling, 3(3), 277-295. doi: 10.22098/mmws.2023.11899.1186. [In Persian]
Bakr, A.A.M. (1976). Stochastic analysis of the effect of spatial variations of hydraulic conductivity on groundwater flow. New Mexico Institute of Mining and Technology.
Beiranvand, B., & Rajaee, T. (2022). Application of artificial intelligence-based single and hybrid models in predicting seepage and pore water pressure of dams: A state-of-the-art review. Advances in Engineering Software, 173, 103268.‏ doi:10.1016/j.advengsoft.2022.
103268
Calamak, M., Kentel, E., & Yanmaz, A.M. (2012). Seepage analysis through earth-fill dams having random fields. In 10th International Congress on Advances in Civil Engineering, Ankara, Turkey, Pp. 97.‏
Cho, S.E. (2012). Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation. Engineering Geology, 133-134, 30-39. doi:10.1016/j.enggeo.2012.02.013
Choopan, Y., Emami, S., & Kheiri Ghooje Bigloo, M. (2020). Evaluating election, imperialist competitive algorithms and artificial neural network method in investigating the groundwater level of Reshtkhar Plain. Amirkabir Journal of Civil Engineering, 52(6), 1333-1246. doi: 10.22060/ceej.2019.15344.
5888. [In Persian]
Croisard, N., Vasile, M., Kemble, S., & Radice, G. (2010). Preliminary space mission design under uncertainty. Acta Astronautica, 66(5), 654-664. doi: 10.1016/j.actaastro.2009.08.004.
Dagan, G. (1976). Comment on ‘Stochastic conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media’by R. Allan Freeze. Water Resources Research, 12(3), 567-567.
DeGroot, D.J., & Baecher, G.B. (1993). Estimating autocovariance of in-situ soil properties. Journal of Geotechnical Engineering, 119(1), 147–166. doi: 10.1061/(ASCE)0733-9410(1993)119:1(147)
Emami, S., Choopan, Y., Kheiry goje biglo, M., & Hesam, M. (2020). Optimal and economic water allocation in irrigation and drainage network using ICA Algorithm (Case study: Sofi-Chay Network). Irrigation and Water Engineering, 10(3), doi: 10.22125/iwe.2020.107104. [In Persian]
Fenton, G.A., & Griffiths, D.V. (1996). Statistics of free surface flow through stochastic Earth Dam. Journal of Geotechnical Engineering, 122(6), 427-436. doi:10.1061/(ASCE)0733-9410122:6(427).
Fukumoto, Y., Yang, H., Hosoyamada, T., & Ohtsuka, S. (2021). 2-D coupled fluid-particle numerical analysis of seepage failure of saturated granular soils around an embedded sheet pile with no macroscopic assumptions. Computers and Geotechnics, 136, 104234.‏ doi:10.1016/j.
compgeo.2021.104234
Gelhar, L.W. (1976). Effects of hydraulic conductivity variations on groundwater flows.‏ http://pascal-francis.inist.fr.
Giglou, K.A., Biglou, M.K.G., Mehrparvar, B., & Naghadeh, A. S. (2019). Investigating amount of leakage, sediment and durability in geosynthetic cover of pumping channel 3 at irrigation network of Moghan. Revista Geoaraguaia, 9(2). Recuperado de https://periodicoscientificos.ufmt.br/ojs/index.php/geo/article/view/8979
Gui, S., Zhang, R., Turner, J.P., & Xue, X. (2000). Probabilistic slope stability analysis with stochastic soil hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 126(1), 1-9.‏ doi: 10.1061/(ASCE)1090-0241(2000)126:1(1).
Helton, J.C. (1997). Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation, 57(1-4), 3-76. doi:10.1080/00949659708811803.
Helton, J.C., Johnson, J.D., & Sallaberry, C.J. (2011). Quantification of margins and uncertainties: example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty. Reliability Engineering & System Safety, 96(9), 1014-1033. doi:10.1016/j.ress.2011.02.012
Helton, J.C., & Johnson, J.D. (2011). Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty. Reliability Engineering & System Safety, 96(9), 1034-1052. doi:10.1016/j.ress.2011.02.013
Helton, J.C. (2011). Quantification of margins and uncertainties: Conceptual and computational basis. Reliability Engineering & System Safety, 96(9), 976-1013. doi;10.1016/j.ress.2011.
03.017
Jafarian, Y., & Nasri, E. (2016). Evaluation of uncertainties in the existing empirical models and probabilistic prediction of liquefaction-induced lateral spreading. Amirkabir Journal of Civil Engineering, 48(3), 275-290. doi: 10.22060/ceej.2016.674
Johari, A., Heydari, A., & Talebi, A. (2021). Prediction of discharge flow rate beneath sheet piles using scaled boundary finite element modeling database. Scientia Iranica, 28(2), 645-655.‏ doi: 10.24200/SCI.2020.
53281.3158
Kalateh, F., & kheiry Ghoujeh-Biglou, M. (2022a). Probabilistic analysis of seepage in earthen dam using Monte Carlo method and with considering permeability of materials and dam geometry. Irrigation and Drainage Structures Engineering Research, 23(86), 133-162. doi: 10.22092/idser.2022.358681.1509. [In Persian]
Kalateh, F., & Kheiry, M. (2022b). Finite elements modeling of the seepage through earth dam in isotropic and non-isotropic conditions and considering the of downstream and reservoir water level.‏ 2nd International Conference on Architecture, Civil Engineering, Urban Development, Environment and Horizons of Islamic Art in the Second Step Statement of the RevolutionAt: Tabriz Islamic Art University, Tabriz, Iran. [In Persian]
Kalateh, F., & Hosseinejad, F. (2020). Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method. Frontiers of Structural and Civil Engineering, 14(2), 387-410.‏ doi;10.1007/s11709-019-0601-z
Kalateh, F., Hosseinejad, F., & Kheiry, M., (2022). Uncertainty quantification in the analysis of liquefied soil response through Fuzzy Finite Element method. Acta Geodynamica et Geomaterialia, 19(3), 177–199. doi: 10.13168/AGG.2022.0007.
Kheiry Ghojeh-biglou, M., & Pilpayeh, A. (2019). Effect of geometric specifications of ogee spillway on the volume variation of concrete consumption using genetic algorithm. Revista Ingeniería UC, 26(2), 145-153.‏
Kheiry Ghojeh Biglou, M., & Pilpayeh, A. (2020). Optimization of height and length of ogee-crested spillway by composing genetic algorithm and regression models (Case Study: Spillway of Balarood Dam). Irrigation and Drainage Structures Engineering Research, 20(77), 39-56. doi: 10.22092/idser.2019.124
750.1368. [In Persian]
Kouhpeyma, A., Kilanehei, F., Hassanlourad, M., & Ziaie-Moayed, R. (2022). Numerical and experimental modelling of seepage in homogeneous earth dam with combined drain. ISH Journal of Hydraulic Engineering, 28(3), 292-302.‏ doi:10.1080/09715010.2021.1891469
Liu, K., Vardon, P., & Hicks, M. (2019). Probabilistic analysis of seepage for internal stability of earth embankments. Environmental Geotechnics, 1-46. doi:10.1680/jenge.17.00040
Lumb, P. (1966). The variability of natural soils. Canadian geotechnical journal, 3(2), 74–97. doi: 10.1139/t66-009
Mazaheri, A., Komasi, M., Soraghi, M., & Nasiri, M. (2020). Studying the effect of geometric characteristics of dam on downstream saturation in earth dam. Iranian Journal of Soil and Water Research, 51(9), 2235-2246. doi: 10.22059/ijswr.2020.299195.668535
Momeneh, S. (2022). Performance comparison of artificial intelligence models with IHACRES model in streamflow modeling of the Gamasiab River catchment. Water and Soil Management and Modelling, 2(3), 1-16. doi: 10.22098/mmws.2022.9972.1076. [In Persian]
Mouyeaux, A., Carvajal, C., Bressolette, P., Peyras, L., Breul, P., & Bacconnet, C. (2019). Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data. Engineering Geology, 259, 105190.‏ doi: 10.1016/j.enggeo.2019.105190
Parsaie, A., Haghiabi, A.H., Latif, S.D., & Tripathi, R.P. (2021). Predictive modelling of piezometric head and seepage discharge in earth dam using soft computational models. Environmental Science and Pollution Research, 28(43), 60842-60856.‏ doi: 10.1007/s11356-021-15029-4
Pasha, E., Mostafaei, H., Khalaj, M., & Khalaj, F. (2013). Calculate the uncertainty interval based on entropy and Dempster Shafer theory of evidence. International Journal of Industiral Engineering & Producion Management, 24(2), 215-223. http://ijiepm
.iust.ac.ir/article-1-406-fa.html.
Peck, R. B. (1967). Stability of natural slopes. Journal of the Soil Mechanics and Foundations Division, 93(4), 403–417. doi: 10.1061/JSFEAQ.0000998
Silva, A.V., Neto, S.A.D. and de Sousa Filho, F.D.A. (2016). A Simplified method for risk assessment in slope stability analysis of Earth Dams using fuzzy numbers. Elecronic Journal of Geotechnical Engineering, 21(10), 3607–3624.
Smith, L., & Freeze, R.A. (1979a). Stochastic analysis of steady state groundwater flow in a bounded domain: 1. one‐dimensional simulations. Water Resources Research, 15(3), 521-528. doi: 10.1029/WR015i003p00521
Smith, L., & Freeze, R.A. (1979b). Stochastic analysis of steady state groundwater flow in a bounded domain: 2. two‐dimensional simulations. Water Resources Research, 15(6), 1543-1559. doi: 10.1029/WR015i006p01543
Merufinia, E., Sharafati, A., Abghari, H., & Hassanzadeh, Y. (2022). The streamflow predition of Kurkursar river using hybrid artificial intelligence models with soft computing approach. Water and Soil Management and Modelling, 3(1), 181-199. doi: 10.22098/mmws.2022.11657.1150. [In Persian]
Smith, L., & Griffiths, D. (2004). Programming the finite element method. John Wiley & Sons.
Tan, X., Wang, X., Khoshnevisan, S., Hou, X., & Zha, F. (2017). Seepage analysis of earth dams considering spatial variability of hydraulic parameters. Engineering Geology, 228, 260-269. doi: 10.1016/j.enggeo.
2017.08.018
Vanmarcke, E. H. (1977). Probabilistic modeling of soil profiles. Journal of the Geotechnical Engineering Division, 103(11), 1227–1246. doi:10.1061/AJGEB6.0000517
Yang, D., Xu, C., & Wang, H. (2022). Analysis of the causes of abnormal seepage in Hualiangting reservoir. In Advances in Measurement Technology, Disaster Prevention and Mitigation (pp. 575-581). CRC Press.‏
Zhang, W., Dai, B., Liu, Z., & Zhou, C. (2017). Unconfined seepage analysis using moving kriging mesh-free method with Monte Carlo Integration. Transport in Porous Media, 116(1), 163-180. doi:10.1007/s11242-016-0769-9