مروری بر شاخص‌های پوشش‌گیاهی سنجش از دور در ارزیابی پوشش اراضی

نوع مقاله : مروری

نویسنده

دانشیار/ گروه منابع طبیعی و محیط زیست، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران

چکیده

داده ­های سنجش از دور از رشد، زادآوری و تغییرات رشد پوشش گیاهی می‌تواند اطلاعات بسیار مفیدی را در نظارت بر محیط‌زیست، حفاظت از تنوع زیستی، کشاورزی، جنگلداری، زیرساخت‌های سبز شهری و سایر زمینه‌های مرتبط ارائه دهد. از کاربرد داده­ های سنجش از دور استفاده در ارزیابی پوشش و کاربری اراضی است. شاخص‌های گیاهی به‌دست‌آمده از تاج پوشش‌گیاهی در سنجش از دور، الگوریتم‌های ساده و مؤثری برای ارزیابی‌های کمی و کیفی پوشش گیاهی، زادآوری و تغییرات رشد گیاهان هستند. این شاخص‌ها در سنجش از دور با استفاده از سیستم­های مختلف هوابرد و ماهواره ای استفاده می­شوند. تا به امروز، هیچ رابطه ریاضی کاملی وجود ندارد که کلیه شاخص‌های گیاهی را به دلیل پیچیدگی ترکیبات مختلف طیف­های نور، ابزار دقیق، پلت فرم­ها و وضوح مورد استفاده، تعریف کند. بنابراین، الگوریتم‌های خاصی برای کاربردهای مختلف با توجه به روابط ریاضی در دامنه طیف تابش نور مرئی، عمدتاً منطقه طیف سبز، از پوشش گیاهی، و طیف‌های نامرئی را برای تعیین کمی سطح پوشش گیاهی، توسعه یافته است. در مقاله حاضر، ویژگی‌های طیفی پوشش گیاهی و شاخص‌های گیاهی، مزایا و معایب شاخص های مختلف توسعه یافته ارائه، و کاربرد آن­ها با توجه به ویژگی­های پوشش گیاهی، محیط، و دقت اجرا بحث می­شود. الگوریتم­های شاخص پوشش گیاهی مورد بحث در این تحقیق، می‌تواند ابزاری مؤثری برای اندازه‌گیری وضعیت پوشش گیاهی اراضی ارائه دهد.

کلیدواژه‌ها

موضوعات


امیری، فاضل، و یگانه، حسن (1391). ارزیابی شاخص‌های گیاهی برای تهیه نقشه درصد پوشش گیاهی در اراضی نیمه خشک بخش مرکزی ایران (حوزه آبخیز قره آقاچ). مرتع و آبخیزداری، 65(2)، 175-189.
امیری، فاضل، و طباطبایی، طیبه (1399). تأثیر فضاهای سبز شهر بوشهر بر دمای سطح زمین و رطوبت محیط پیرامونی. علوم محیطی، 18(3)، 205-184.
امیری، فاضل، و طباطبایی، طیبه (1400). طبقه‌بندی و تحلیل روند تغییر کاربری اراضی محیط شهری با استفاده از تصاویر چند زمانه لندست: مطالعه موردی در منطقه بوشهر. مدیریت اراضی، 9(1)، 186-167.
امیری فاضل، و ناطقی، سعیده (1402). طبقه‌بندی پوشش اراضی استان بوشهر با استفاده از تصاویر ترکیب داده‌های لندست 8 و مودیس. مدل‌سازی و مدیریت آب و خاک، 3(2)، 143-156.
طباطبایی، طیبه، و امیری، فاضل (1398). ارزیابی چندزمانه تغییرات جنگل‌های مانگرو در مناطق ساحلی بوشهر با استفاده از تصاویر ماهواره لندست. اکولوژی کاربردی، ۸(۳)، 45-62.
 
Amiri, F. (2021). Carbon storage potential of avicennia marina as South influenced by soil factors in National Park Nayband, Coast of Iran. Acta Ecologica Sinica, 41(6), 566-574.
Amiri, F., & Nateghi S. (2023). Lands cover classification of Bushehr Province using Landsat-8 and MODIS images. Water and Soil Management and Modelling, 3(2), 143-156. [In Persian]
Amiri, F., Rahdari, V., Maleki Najafabadi, S., Pradhan, B., & Tabatabaei, T. (2014). Multi-temporal landsat images based on eco-environmental change analysis in and around Chah Nimeh reservoir, Balochestan (Iran). Environmental Earth Sciences, 72(3), 801-809.
Amiri, F., & Tabatabaie, T. (2020). The influence of green spaces on land surface temperature and humidity of the surrounding environment in Bushehr city. Environmental Sciences, 18(3), 184-205. [In Persian]
Amiri, F., & Tabatabaie, T. (2021). Classification and analysis of land use changes in urban environments using multi-temporal landsat images: a case study of Bushehr. Land Management, 9(1), 167-186. [In Persian]
Amiri, F., & Yeganeh, H. (2012). Evaluation of vegetation indices for preparing vegetation cover percentage in semi-arid lands of central iran (case study: Ghareh Aghaj Watershed). Journal of Range and Watershed Managment, 65(2), 175-189. [In Persian]
Anda, A. (2009). Irrigation timing in maize by using the crop water stress index (CWSI). Cereal Research Communications, 37(4), 603-610.
Arkebauer, T.J. (2005). Leaf radiative properties and the leaf energy budget. Micrometeorology in Agricultural Systems, 47, 93-103.
Ashburn, P. (1979). The vegetative index number and crop identification. NASA Johnson Space Center Proc of Tech Sessions, 1-2, 19800007243
Badhwar, G. (1981). The use of parameters to separate and identify spring small grains. In: Proceedings of the Quarterly Technical Interchange Meeting NASA Johnson Space Flight Center, Houston, Tex, USA.
Bannari, A. (1994). High spatial and spectral resolution remote sensing for the management of the urban environment. In: First Int. Airborne Remote Sensing Conference and Exhibition, Strasburg, France. Pp. 247-260.
Bannari, A., Asalhi, H., & Teillet, P.M. (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping. In: IEEE International geoscience and remote sensing symposium. IEEE. doi:3053-3055.3010.1109/IGARSS.1989.576128
Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2), 161-173.
Baret, F., Jacquemoud, S., & Hanocq, J. (1993). The soil line concept in remote sensing. Remote Sensing Reviews, 7(1), 65-82.
Batten, G. (1998). Plant analysis using near infrared reflectance spectroscopy: the potential and the limitations. Australian Journal of Experimental Agriculture, 38(7), 697-706.
Berni, J.A.J., Zarco-Tejada, P.J., Sepulcre-Cantó, G., Fereres, E., & Villalobos, F. (2009). Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery. Remote Sensing of Environment, 113(11), 2380-2388.
Birth, G.S., & McVey, G.R. (1968). Measuring the color of growing turf with a reflectance spectrophotometer 1. Agronomy Journal, 60(6), 640-643.
Blackburn, G.A. (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66(3), 273-285.
Broge, N.H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156-172.
Burns, D.A., & Ciurczak, E.W. (2007). Handbook of near-infrared analysis. 4th Edition: CRC press, 834 pages.
Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711-722.
Chappelle, E.W., Kim, M.S., & McMurtrey, J.E. (1992). Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39(3), 239-247.
Chen, J.M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229-242.
Crippen, R.E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71-73.
Cruden, B.A., Prabhu, D., & Martinez, R. (2012). Absolute radiation measurement in venus and mars entry conditions. Journal of Spacecraft and Rockets, 49(6), 1069-1079.
Datt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66(2), 111-121.
Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741-2759.
Daughtry, C.S. (2001). Discriminating crop residues from soil by shortwave infrared reflectance. Agronomy Journal, 93(1), 125-131.
Daughtry, C.S.T., Walthall, C.L., Kim, M.S., De Colstoun, E.B., & McMurtrey, J.E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229-239.
Demetriades-Shah, T.H., Steven, M.D., & Clark, J.A. (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33(1), 55-64.
Elsheikh, R., Mohamed Shariff, A.R.B., Amiri, F., Ahmad, N.B., Balasundram, S.K., & Soom, M.A.M. (2013). Agriculture land suitability evaluator (alse): a decision and planning support tool for tropical and subtropical crops. computers and electronics in agriculture, 93, 98-110.
Elvidge, C.D., & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1), 38-48.
Fuentes, S., De Bei, R., Pech, J., & Tyerman, S. (2012). Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrigation Science, 30(6), 523-536.
Gago, J., Douthe, C., Coopman, R.E., Gallego, P.P., Ribas-Carbo, M., Flexas, J., Escalona, J., & Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153, 9-19.
Gamon, J., & Surfus, J. (1999). Assessing leaf pigment content and activity with a reflectometer. The New Phytologist, 143(1), 105-117.
Gamon, J.A., Peñuelas, J., & Field, C.B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35-44.
Gitelson, A., & Merzlyak, M.N. (1994). Spectral reflectance changes associated with autumn senescence of aesculus hippocastanum l. and acer platanoides l. leaves. spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3), 286-292.
Gitelson, A.A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165-173.
Gitelson, A.A., Kaufman, Y.J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87.
Gitelson, A.A., Keydan, G.P., & Merzlyak, M.N. (2006). Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 33(11), L11402.
Gitelson, A.A., & Merzlyak, M.N. (1996). Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148(3), 494-500.
Gitelson, A.A., Merzlyak, M.N., & Chivkunova, O.B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), 38-45.
Goel, N.S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews, 10(4), 309-347.
Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., & Strachan, I.B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337-352.
Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416-426.
Haxeltine, A., & Prentice, I. (1996). A general model for the light-use efficiency of primary production. Functional Ecology, 551-561.
Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., & Friborg, T. (2015). Estimating evapotranspiration with thermal UAV data and two source energy balance models. Hydrology & Earth System Sciences Discussions, 12(8), 7469-7502.
Honkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., Mäkynen, J., & Pesonen, L. (2013). Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture. Remote Sensing, 5(10), 5006-5039.
Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., & Ferreira, L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195-213.
Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295-309.
Hunt, E.R., Rock, B.N. (1989). Detection of changes in leaf water content using Near and Middle Infrared reflectances. Remote Sensing of Environment, 30(1), 43-54.
Nourqolipour, R., Shariff, A.R.B.M., Balasundram, S.K., Ahmad, N.B., Sood, A.M., Buyong, T., & Amiri, F. (2015a). A GIS-based model to analyze the spatial and temporal development of oil palm land use in Kuala Langat district, Malaysia. Environmental Earth Sciences, 73(4), 1687-1700.
Nourqolipour, R., Shariff, A.R.B.M., Ahmad, N.B., Balasundram, S.K., Sood, A.M., Buyong, T., & Amiri, F. (2015b). Multi-objective-based modeling for land use change analysis in the South West of Selangor, Malaysia. Environmental Earth Sciences, 74(5), 4133-4143.
Idso, S.B., Jackson, R.D., Pinter, P.J., Reginato, R.J., & Hatfield, J.L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45-55.
Jackson, R.D. (1980). Hand-held radiometry: a set of notes developed for use at the workshop on hand-held radiometry, phoenix, ariz. Agricultural Research (Western Region), Science and Education Administration, U.S. Department of Agriculture, 66 pages.
Jackson, R.D. (1983). Spectral indices in N-Space. Remote Sensing of Environment, 13(5), 409-421.
Jordan, C.F. (1969). Derivation of leaf‐area index from quality of light on the forest floor. Ecology, 50(4), 663-666.
Kanemasu, E.T., Hellman, J.L., Bagley, J.O., & Powers, W.L. (1977). Using landsat data to estimate evapotranspiration of winter wheat. Environmental Management, 1(6), 515-520.
Karnieli, A., Agam, N., Pinker, R.T., Anderson, M., Imhoff, M.L., Gutman, G.G., Panov, N., & Goldberg, A. (2010). Use of NDVI and land surface temperature for drought assessment: merits and limitations. Journal of Climate, 23(3), 618-633.
Kaufman, Y.J., & Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE transactions on Geoscience and Remote Sensing, 30(2), 261-270.
Kauth, R.J., & Thomas, G. (1976). The tasselled capa graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. In: LARS symposia. p 159.
Kogan, F.N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91-100.
Lebourgeois, V., Chopart, J.L., Bégué, A., Le & Mézo, L. (2010). Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment. Agricultural Water Management, 97(1), 75-82.
Li, B., Liu, R., Liu, S., Liu, Q., Liu, F., & Zhou, G. (2012). Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system. Transactions of the Chinese Society of Agricultural Engineering, 28(13), 160-165.
Li, F., Miao, Y., Feng, G., Yuan, F., Yue, S., Gao, X., Liu, Y., Liu, B., Ustin, S.L., & Chen, X. (2014). Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157, 111-123.
Lichtenthaler, H.K., Lang, M., Sowinska, M., Heisel, F., & Miehé, J.A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 148(5), 599-612.
Liu, H.Q., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 457-465.
Louhaichi, M., Borman, M.M., & Johnson, D.E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16(1), 65-70.
Mahlein, A.K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, L., Steiner, U., & Oerke, E.C. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21-30.
Mahlein, A.K., Oerke, E.C., Steiner, U., & Dehne, H.W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 197-209.
Major, D., Baret, F., & Guyot, G. (1990). A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing, 11(5), 727-740.
Martynenko, A., Shotton, K., Astatkie, T., Petrash, G., Fowler, C., Neily, W., & Critchley, A.T. (2016). Thermal imaging of soybean response to drought stress: the effect of Ascophyllum nodosum seaweed extract. Springerplus, 5(1), 1-14.
McFeeters, S.K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
McMurtrey, J.E., Chappelle, E.W., Kim, M.S., Meisinger, J.J., & Corp, L.A. (1994). Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sensing of Environment, 47(1), 36-44.
McNairn, H., & Protz, R. (1993). Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using Thematic Mapper. Canadian Journal of Remote Sensing, 19(2), 152-159.
Merzlyak, M.N, Gitelson, A.A., Chivkunova, O.B., & Rakitin, V.Y. (1999). Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106(1), 135-141.
Misra, P., & Wheeler, S. (1977). Landsat data from agricultural sites: crop signature analysis. In: ERIM Proc. of the 11th Intern. Symp. on Remote Sensing of Environment, 2, 1473-1482.
Musick, H.B., & Pelletier, R.E. (1988). Response to soil moisture of spectral indexes derived from bidirectional reflectance in thematic mapper wavebands. Remote Sensing of Environment, 25(2), 167-184.
Nourqolipour, R., Mohamed Shariff, A.R.B., Balasundram, S.K., Ahmad, N.B., Sood, A.M., Buyong, T., & Amiri, F. (2015a). A GIS-based model to analyze the spatial and temporal development of oil palm land use in Kuala Langat district, Malaysia. Environmental Earth Sciences, 73(4), 1687-1700.
Nourqolipour, R., Shariff A.R.B.M., Ahmad, N.B., Balasundram, S.K., Sood, A.M., Buyong, T, & Amiri, F. (2015b). Multi-objective-based modeling for land use change analysis in the South West of Selangor, Malaysia. Environmental Earth Sciences, 74(5), 4133-4143.
Oerke, E.C., Mahlein, A.K., & Steiner, U. (2014). Proximal Sensing of Plant Diseases. In: Gullino, M.L., Bonants, P.J.M. (eds) Detection and Diagnostics of Plant Pathogens. Springer Netherlands, Dordrecht, pp 55-68.
O'Shaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. (2011). Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural Water Management, 98(10), 1523-1535.
Pearson, R.L., & Miller, L.D. (1972). Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, VIII: 1355.
Pinty, B., & Verstraete, M.M. (1992). GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio, 101(1), 15-20.
Plummer, S. (1994). The angular vegetation index: an atmospherically resistant index for the second along track scanning radiometer (ATSR-2). In: Proc. Sixth Int. Symp. Physical Measurements and Signatures in Remote Sensing, Val d'Isere, France.
Prashar, A., & Jones, H.G. (2016). Assessing drought responses using thermal infrared imaging. In: Environmental Responses in Plants. Springer, pp 209-219.
Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126.
Quan, Z., Xianfeng, Z., & Miao, J. (2011). Eco-environment variable estimation from remote sensed data and eco-environment assessment: models and system. Acta Botanica Sinica, 47, 1073-1080.
Rahim, H.R.B.A., Lokman, M.Q.B., Harun, S.W., Hornyak, G.L., Sterckx, K., Mohammed, W.S., & Dutta, J. (2016). Applied light-side coupling with optimized spiral-patterned zinc oxide nanorod coatings for multiple optical channel alcohol vapor sensing. Journal of Nanophotonics, 10(3), 036009.
Ren-hua, Z., Rao, N., & Liao, K. (1996). Approach for a vegetation index resistant to atmospheric effect. Journal of Integrative Plant Biology, 38(1), 53-62.
Richardson, A.J., & Wiegand, C. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541-1552.
Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95-107.
Roujean, J.L., & Breon, F.M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375-384.
Rouse, J.J., Haas, R.H., Deering, D., Schell, J., & Harlan, J.C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA Special Publication 351, 309.
Rouse, J.J.W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA Technical Reports Server, Tex, USA, 1974.
Ruimy, A., Kergoat, L., & Bondeau, A. (1999). Comparing global models of terrestrial net primary productivity (NPP): Analysis of differences in light absorption and light‐use efficiency. Global Change Biology, 5(1), 56-64.
Serrano, L., Peñuelas, J., & Ustin, S.L. (2002). Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sensing of Environment, 81(2), 355-364.
Sims, D.A., & Gamon, J.A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2), 337-354. doi:10.1016/S0034-4257(02)00010-X
Sishodia, R.P., Ray, R.L., & Singh, S.K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136.
Smith, R., Adams, J., Stephens, D., & Hick, P. (1995). Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite. Australian Journal of Agricultural Research, 46(1), 113-125.
Sripada, R.P., Heiniger, R.W., White, J.G., Weisz, R. (2005). Aerial color infrared photography for determining late‐season nitrogen requirements in corn. Agronomy Journal, 97(5), 1443-1451.
Tabatabaie, T., & Amiri, F. (2019). Multi-Temporal Assessment of mangrove forests change in the coastal areas of Bushehr region based on landsat satellite imagery. Iranian Journal of Applied Ecology, 8(3), 45-62. [In Persian]
Tanre, D.D. (1990). Description of a computer code to simulate the satellite signal in the solar spectrum: The 5s code. International Journal of Remote Sensing, 11(1), 659-668.
Tian, Q., & Min, X. (1998). Advances in study on vegetation indices. Advances in Earth Science, 13(4), 327-333.
Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.
Van Genderen, J.L. (2011). Advances in environmental remote sensing: sensors, algorithms, and applications. CRC Press, Taylor & Francis Group, Boca Raton, USA, 4(5), 556 pp.
Verrelst, J., Schaepman, M.E., Koetz, B., & Kneubühler, M. (2008). Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sensing of Environment, 112(5), 2341-2353.
Vogelmann, J., Rock, B., & Moss, D. (1993). Red edge spectral measurements from sugar maple leaves. Remote Sensing, 14(8), 1563-1575.
Wang, L., & Qu, J.J. (2007). NMDI: a normalized multi‐band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophysical Research Letters, 34(20), L20405.
Wang, X., Miaomiao, W., Shaoqiang, W., & Yundong, W. (2015). Extraction of vegetation information from visible unmanned aerial vehicle images. Transactions of the Chinese Society of Agricultural Engineering, 31(5), 152-159.
Wenlong, X. (2009). Vegetation index controlling the influence of soil reflection.
Wolf, A.F. (2012). Using WorldView-2 Vis-NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios. In: algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XVIII. The International Society for Optical Engineering, pp 188-195.
Yang, Z., Willis, P., & Mueller, R. (2008). Impact of band-ratio enhanced AWIFS image to crop classification accuracy. In: Proc. Pecora, Denver, Colo, USA, 1, pp 1-11.
Zarco-Tejada, P.J., Berjón, A., López-Lozano, R., Miller, J.R., Martín, P., Cachorro, V., González, M.R., De & Frutos, A. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99(3), 271-287.
Zarco-Tejada, P.J., González-Dugo, V., & Berni, J.A.J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117: 322-337.
Zarco-Tejada, P.J., González-Dugo, V., Williams, L.E., Suárez, L., Berni, J.A.J., Goldhamer, D., & Fereres, E. (2013). A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index. Remote Sensing of Environment, 138, 38-50.
Zhang, B., Wu, D., Zhang, L., Jiao, Q., & Li, Q. (2012). Application of hyperspectral remote sensing for environment monitoring in mining areas. Environmental Earth Sciences, 65(3), 649-658.
Zhang, C., & Kovacs, J.M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712.
Zhang, Y., Meng, Q.Y., Wu, J.L., & Zhao, F. (2011). Study of environmental vegetation index based on environment satellite CCD data and LAI inversion. Spectroscopy and Spectral Analysis, 31(10), 2789-2793.