حذف دایرکت بلو 71 و کروم از محلول‌های آبی توسط انواع جاذب‌های آلی دارای پوشش فلزی، زغال زیستی دارای پوشش فلزی و کامپوزیت زغال زیستی-فلز

نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری/ گروه علوم و مهندسی خاک، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 دانشیار/ گروه علوم و مهندسی خاک، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 استادیار/ گروه علوم و مهندسی خاک، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 استاد/ گروه علوم و مهندسی خاک، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

5 استادیار/ دانشکده کشاورزی، دانشگاه پوترا مالزی، سلانگور، مالزی

چکیده

ورود گستردة پساب‌های حاصل از کارخانجات و صنایع مختلف به محیط زیست و به تبع آن آلوده‌سازی منابع آب و خاک، منجر به بروز خطرات بسیاری برای انسان و سایر موجودات می‌شود. لذا، اصلاح این منابع حائز اهمیت است. بررسی‌ها نشان می‌دهد که کاربرد زغال زیستی و زغال زیستی دارای پوشش فلز به‌طور مؤثری منجر به حذف میزان قابل‌توجهی آلاینده از آب و خاک می‌شود، ولی تاکنون به‌صورت جامع تأثیر کامپوزیت کربن-فلز بر حذف آلاینده‌ها به‌ویژه آلاینده‌های آنیونی مورد بررسی قرار نگرفته است. در این پژوهش تأثیر زی‌توده گیاهی، زی‌توده دارای پوشش فلزی، زغال زیستی، زغال زیستی دارای پوشش فلزی و کامپوزیت زغال زیستی-فلز در دو دما (300 و 600 درجة سانتی‌گراد) بر حذف آلاینده‌های دایرکت بلو 71 و کروم از آب مورد بررسی قرار گرفت. زغال زیستی دارای پوشش فلز و کامپوزیت‌های زغال زیستی-فلز مختلف از ترکیب فلزات (منگنز، روی، مس، آهن و آلومینیوم) با بقایای کشاورزی (کاه برنج) به‌صورت خام یا زغال زیستی تهیه شدند. سپس مقدار معینی از جاذب‌ها و مواد آلاینده با غلظت 20 میلی‌گرم بر لیتر با هم ترکیب شده و به‌مدت سه ساعت تکان داده شدند تا به تعادل رسیدند. پس از سانتریفیوژ کردن و فیلتراسیون، غلظت نهایی آلاینده‌ها قرائت و درصد حذف دایرکت بلو 71 و کروم محاسبه شد. نتایج پژوهش حاضر نشان داد که کاربرد کامپوزیت آلومینیوم و آهن و زغال زیستی دارای پوشش آلومینیوم و آهن تولید شده در دمای 600 درجه سانتی‌گراد توانست به‌ترتیب98.303، 88.847، 98.302 و 96.777 درصد از آلاینده دایرکت بلو 71 و 97.983، 78.733، 96.75 و 92.167 درصد از آلاینده کروم را از محلول آبی حذف کند؛ بنابراین، کاربرد این جاذب‌ها توانست آب آلوده به دایرکت بلو 71 و کروم را اصلاح نماید.

کلیدواژه‌ها

موضوعات


رضائی تبار، سهیلا، و الهی، مهدی (1402). کارائی روش راکتور ناپیوسته متوالی (SBR) در تصفیه فاضلاب شهری و ارزیابی خطر استفاده از آن در کشاورزی. مدل­سازی و مدیریت آب و خاک، 3(1)، 84- 97. doi:10.22098/mmws.2022.11211.1106
ضامنی، لیلا (1394). آبشویی نیترات در خاک اصلاح شده با بایوچار و بایوچار دارای پوشش آهن. پایان‌نامه کارشناسی ارشد، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
 
References
Abraham, R., Mathew, S., Kurian, S., Saravanakumar, M.P., Ealias, A.M., & George, G. (2018). Facile synthesis, growth process, characterization of a nanourchin-structured α-MnO2 and their application on ultrasonic-assisted adsorptive removal of cationic dyes: A half-life and half-capacity concentration approach. Ultrasonics Sonochemistry, 49, 175-189. doi:10.1016/j.ultsonch.2018.07.045
Ahmad A.A., Hameed, B.H., & Aziz, N. (2007). Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials, 141, 70–76. doi:10.1016/j.jhazmat.2006.06.094
Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung. J.K., Yang, J.E., & Ok, Y.S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology 118, 536-544. doi:10.1016/j.biortech.2012.05.042
Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., & Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 99, 19-33. doi:10.1016/j.chemosphere.2013.10.071
Alvarez, L.H., Meza-Escalante, E.R., Gortares-Moroyoqui, P., Morales, L., Rosas, K., Garcia-Reyes, B., & Garcia-Gonzalez, A. (2016). Influence of redox mediators and salinity level on the (bio) transformation of Direct Blue 71: kinetics aspects. Journal of Environmental Management., 183(1), 84-89. doi:10.1016/j.jenvman.2016.08.044
Bulut, Y., Gozubenli, N., & Aydin, H. (2007). Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells. Journal of Hazardous Materials, 144, 300-306. doi:10.1016/j.jhazmat.2006.10.027
Celekli, A., Tanriverdi, B., & Bozkurt, H. (2012). Lentil straw: a novel adsorbent for removing of hazardous dye- sorption behavior studies. Clean-Soil, Air, Water, 40(5), 515-522. doi:10.1002/clen.201100418
Chen, T. Zhou, Z., Xu, S., Wang, H., & Lu, W. (2015). Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge. Bioresource Technology. doi: 10.1016/j.biortech.2015.04.115.
Choppala, G.K., Bolan, N.S., Megharaj, M., Chen, Z., & Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environmental Quality, 1175-1184. doi:10.2134/jeq2011.0145
Chun, Y., Sheng, G.Y., Chiou, C.T., & Xing, B.S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science and Technology. 38, 4649-4655. doi:10.1021/es035034w
Fendorf, S., Wiellinga, B.W., & Hansel, C.M. (2000). Chromium transformations in natural environments: the role of biological and abiological processes in chromium (VI) reduction. International Geology, 42, 691-701. doi:10.1080/00206810009465107
Fuchs, M., Garcia-Perez, M., Small, P., & Flora, G. (2014). Campfire Lessons - breaking down the combustion process to understand biochar production. The Biochar Journal, Arbaz, Switzerland.
Garg, D., Majumder, C.B., Kumar, S., & Sarkar, B. (2019). Removal of Direct blue-86 dye from aqueous solution using alginate encapsulated activated carbon (PnsAC-alginate) prepared from waste peanut shell. Journal of Environmental Chemical Engineering, 7, 103365. doi:10.1016/j.jece.2019.103365
Hassaan, M.A., El Nemr, A., & Madkour, F.F. (2017). Testing the advanced oxidation processes on the degradation of Direct Blue 86 dye in wastewater. The Egyptian Journal of Aquatic Research, 43(1), 11-19. doi:10.1016/j.ejar.2016.09.006
Kambo, H.S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. doi:10.1016/j.rser.2015.01.050
Kumar, E., Bhatnagar, A., Hogland, W., Marques, M., & Sillanpaa, M. (2014). Interaction of anionic pollutants with Al-based adsorbents in aqueous media- A review. Chemical Engineering Journal, 241, 443-456. doi:10.1016/j.cej.2013.10.065
Li, R., Wang, J.J., Gaston, L.A., Zhou, B., Li, M., Xiao, R., Wang, Q., Zhang, Z., Huang, H., Liang, W., Huamg, H., & Zhang, X. (2018). An overview of carbothermal synthesis of metal-biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon, 129, 674-687. doi:10.1016/j.carbon.2017.12.070
Mehrabian, F., Kamani, H., Safari, Gh.H., Asgari, Gh., & Ashrafi, S.D.. (2018). Direct Blue 71 removal from aqueous solution by laccase-mediated system; A dataset. Data in brief. 19, 437-443. doi:10.1016/j.dib.2018.05.056
Mohan, D., Rajput, S., Singh, V.K., Steele, P.H., & Pittman, Jr, C.U. (2011). Modeling and evaluation of chromium remediation from water using low cost biochar, a green adsorbent. Journal of Hazardous Materials, 188, 319-333. doi:10.1016/j.jhazmat.2011.01.127
Pan, J., Jiang, J., & Xu, R. (2013). Adsorption of Cr (III) from acidic solutions by crop straw derived biochars. Journal of Environmental Sciences, 25(10), 1957-1965. doi:10.1016/s1001-0742(12)60305-2
Park, J.H., Wang, J.J., Meng, Y., Wei, Z., Delaune, R.D., & Seo, D.C. (2019). Adsorption/desorption behavior of cationic and anionic dyes by biochars prepared at normal and high pyrolysis temperatures. Colloids and Surfaces A, 572, 274-282. doi:10.1016/j.colsurfa.2019.04.029
Picho-Chillan, G., Dante, R.C., Munoz-Bisesti, F., Martin-Ramos, P., Chamorro-Posada, P., Vargas-Jentzsch, P., Sanchez-Arevalo, F.M., Sandoval-Pauker, C., & Rutto, D. (2019). Photodegradation of Direct Blue 1 azo dye by polymeric carbon nitride irradiated with accelerated electrons. Materials Chemistry and Physics, 237, 121878. doi:10.1016/j.matchemphys.2019.121878
Qiu, Y., Zheng, Z., Zhou, Z., & Sheng, G.D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 100, 5348- 5351. doi:10.1016/j.biortech.2009.05.054
Rezaitabar, S., & Elahi, M, (2023). The performance of sequencing batch reactors (SBR) in municipal wastewater treatment of SBRs effluent in agricultural irrigation. Water and soil management and modeling, 3(1), 84-97. doi:10.22098/mmws.2022.11211.1106 [In Persian]
Shakya, A., & Agarwal, T. (2019). Removal of Cr (VI) from water using pineapple peel derived biochars: Adsorption potential and re-usability assessment. Journal of Molecular Liquids, 293,111497. doi:10.1016/j.molliq.2019.111497
Tan, Zh., Yuan, Sh., Hong, M., Zhang, L., & Huang, Q. (2020). Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. Journal of Hazardous Materials, 384(5), 121370. doi:10.1016/j.jhazmat.2019.121370
Taregh, R., Akter, N., & Azam, M.S. (2019). Biochars and biochar composites: low-cost adsorbents for environmental remediation. Biochar from Biomass and Waste, 169-209.
Tunc, S., Gurkan, T., & Duman, O. (2012). On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181-182, 431-442. doi:10.1016/j.cej.2011.11.109
Wang, X.S., Chen, L.F., Li, F.Y., Chen, K.L., Wan, W.Y., & Tang, Y.J. (2010). Removal of Cr (VI) with wheat-residue derived black carbon: reaction mechanism and adsorption performance. Journal of Hazardous Materials, 175, 816-822. doi:10.1016/j.jhazmat.2009.10.082
Xu, R.K., Xiao, S.C., Yuan, J.H., & Zhao, A.Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource Technology, 102, 10293-10298. doi:10.1016/j.biortech.2011.08.089
Yi, Y.Q., Tu, G.Q., Zhao, D.Y., Tsang, P.E., & Fang, Z.Q. (2020). Key role of FeO in the reduction of Cr (VI) by magnetic biochar synthesized using steel pickling waste liquor and sugarcane bagasse. Journal of Cleaner Production, 245, 118886. doi:10.1016/j.jclepro.2019.118886
Zameni, L. (2016) Leaching in a soil amended with biochar and Fe-coated biochar Nitrate. M.Sc. Thesis, Sari Agricultural Sciences and Natural Resources University. [In Persian]
Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis, characterization, and environmental implications of graphene-coated biochar. Science of The Total Environment. 435-436, 567-572. doi:10.1016/j.scitotenv.2012.07.038
Zou, H., Jiawei, Zh., He, F., Zhong, Zh., Huang, J., Zheng, Y., Zhang, Y., Yang, Y., Yu, F., Bashir, M.A., & Gao, B. (2021). Ball milling biochar iron oxide composites for the removal of chromium (Cr (VI)) from water: Performance and mechanisms. Journal of Hazardous Materials, 413, 125252. doi:10.1016/j.jhazmat.2021.125252