شبیه‌سازی عملکرد و بهره‌وری آب ارقام لوبیای چشم‌بلبلی تحت شرایط کم‌آبیاری با استفاده از مدل DSSAT

نوع مقاله : پژوهشی

نویسندگان

1 دانش آموخته دکتری/ بخش تحقیقات مدیریت آب در مزرعه، مؤسسة تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 استاد/ گروه علوم و مهندسی آب، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

مدل‌های شبیه‌سازی گیاهی می‌توانند برای پیش‌بینی عملکرد محصول و بررسی تأثیر تنش خشکی بر رشد و نمو گیاه مفید باشند. در پژوهش حاضر به‌منظور شبیه‌سازی عملکرد دانه، غلاف، زیست‌توده، اجزای بیلان آب خاک و بهره‌وری مصرف آب در ارقام گیاه لوبیای چشم‌بلبلی از مدل DSSAT استفاده شد. آزمایش مزرعه‌ای به‌صورت کرت‌های خرد شده و در قالب طرح بلوک‌های کامل تصادفی با سه تکرار و به مدت دو فصل زراعی متوالی در سال‌های 1397 و 1398 در استان گیلان انجام شد. تیمار اصلی شامل آبیاری در سه سطح 100 درصد نیاز آبی (I1)، 75 درصد نیاز آبی (I2)، 50 درصد نیاز آبی (I3) و تیمار فرعی، سه رقم لوبیای چشم‌بلبلی شامل رقم کامران (C1)، رقم محلی خوزستان (C2) و رقم محلی دهسر (C3) بود. نتایج این پژوهش نشان داد که متوسط میزان خطای نسبی (MRE) بین مقادیر مشاهده شده و شبیه‌سازی شده در 1397و 1398 برای عملکرد زیست‌توده به‌ترتیب 0.88- و 0.89- درصد، در عملکرد دانه به‌ترتیب 0.10 و 0.09 درصد و برای عملکرد غلاف به‌ترتیب 0.45- و 0.44- درصد بود. ریشه میانگین مربعات خطا (RMSE) در برآورد میزان بهره‌وری مصرف آب مبتنی بر عملکرد زیست‌توده بر اساس آب مصرفی، برای ارقام کامران، خوزستان و دهسری در سال 1397 به‌ترتیب 0.0106، 0.01078 و 0.01087 کیلوگرم بر مترمکعب و در 1398 به‌ترتیب 0.01044، 0.01079 و 0.01091 کیلوگرم بر مترمکعب برآورد شد. به‌طور کلی نتایج نشان داد که ریشه میانگین مربعات خطای نسبی و متوسط میزان خطای نسبی برای ﻣﻘﺎدﯾﺮ ﺷبیه‌سازی شده و ﻣﺸﺎﻫﺪه‌ای در عملکرد زیست‌توده، دانه و غلاف در ﻣﺤﺪوده ﻗﺎﺑﻞ ﻗﺒﻮﻟﯽ بود و ﻣﺪل DSSAT توانست ﻋﮑﺲاﻟﻌﻤﻞ ارقام گیاه لوبیای چشم‌بلبلی را در شرایط کم‌‌آبیاری ﺑﻪ ﺧﻮﺑﯽ ﺷبیه‌سازی نماید.

کلیدواژه‌ها

موضوعات


دوﮐﻮﻫﮑﯽ، ح.، ﻗﯿﺼﺮی، م.، ﻣﻮﺳﻮی، ف.، و ﻣﯿﺮﻟﻄﯿﻔﯽ، م. (1391). ﺷبیه‌سازی رﻃﻮﺑﺖ ﺧﺎک در ﺷﺮاﯾﻂ ﮐﻢ آﺑﯿﺎری ﺑﺎ اﺳﺘﻔﺎده از ﻣﺪل DSSAT . ﻣﺪﯾﺮﯾﺖ آب و آﺑﯿﺎری، 2(1)، 1-14.
رمضانی واسوکلائی، م.، درزی نفتچالی، ع.، صابرعلی، ف.، و کاظمی، ش. (1401). ارزیابی و شبیه سازی تاثیر مدیریت سطح ایستابی بر عملکرد برنج و اجزای آن با استفاده از مدل. مهندسی آبیاری و آب ایران. 12(48)، 157-175.
سپاسخواه، ع.ر.، توکلی، ع.، و موسوی. ف. (1385). اصول و کاربرد کم آبیاری. انتشارات کمیته ملی آبیاری و زهکشی ایران، 288 صفحه.
عبدزادگوهری، ع.، تافته، آ.، و ابراهیمی پاک، ن. (1401). بررسی سامانه نیاز آب در تعیین مقدار واقعی آب آبیاری گیاه بادام ‌زمینی بر اساس حل معکوس تابع تولید عملکرد در شرایط تنش آبی. آبیاری و زهکشی ایران، 16(3)، 460-471.
ﻗﺪﻣﯽ ﻓﯿﺮوزآﺑﺎدی، ع.، ﺷﺎﻫﻨﻈﺮی، ع.، و راﺋﯿﻨﯽﺳﺮﺟﺎز، م. (1393). ﺗﺤﻠﯿﻞ اﻗﺘﺼﺎدی ﻣﺪﯾﺮﯾﺖ ﮐﻢآﺑﯿﺎری و ﺗﻌﯿﯿﻦ اﻋﻤﺎق ﺷﺎﺧﺺ ﺑﻬﯿﻨﻪ آﺑﯿﺎری در ﮔﯿﺎه آﻓﺘﺎﺑﮕﺮدان. ﭘﮋوﻫﺶﻫﺎی ﺣﻔﺎﻇﺖ آب و ﺧﺎک، 21 (6)، 255-268.
مندنی، ف.، کرمی، پ.، و قبادی، ر. (1400). شبیه‌سازی تاثیر رژیم‌های رطوبتی بر رشد و عملکرد ذرت در منطقه کرمانشاه توسط مدل CERES-Maize. تحقیقات علوم زراعی در مناطق خشک، 3(1)، 56-39.
Abdzad Gohari, A., Tafteh, A., & Ebrahimipak, N. (2022). Investigation of water requirement system in determining the actual amount of irrigation water of peanut plant based on inverse solution of yield function under water stress conditions. Iranian Irrigation and Drainage, 16(3), 460-471 (in Persian).
Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration. FAO Irrigation and Drainage Paper 56.
Attia, A., El-Hendawy, S., Al-Suhaiban, N., Alotaibi, M., Usman, M., Tahir, M., & Kamal, K. (2021). Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation. Agricultural Water Management, 249, 106812.
Basaran, U., Ayan, I., Acar, Z., Mut, H., & Asci, O. (2011). Seed yield and agronomic parameters of cowpea (vigna unguiculata L.) genotypes grown in the black sea region of Turkey. African Journal of Biotechnology, 10(62), 13461-13464.
Bastos, E., Folegatti, M., Faria, R., Júnior, A., & Cardoso, M. (2002). Simulation of growth and development of irrigated cowpea in Piauí State by CROPGRO model. Pesquisa Agropecuária Brasileira, 37(10), 1381-1387.
Bhowmik, A., Khawas, S., Dutta, G., Ray, R., & Patra, S. (2020). Response of summer cowpea to growth, yield and water use efficiency under different irrigation and nutrient management in lower indo-gangetic plains. International Journal of Current Microbiology and Applied Sciences, 9(8), 900-911.
Chemutai, C., Cheminingwa, G.N., & Ambuko, J. (2018). Effect of fertilizers and harvesting method on yield of cowpea. African Journal of Rural Development, 3(2), 1-7.
Chimonyo, V.G.P., Modi, A.T., & Mabhaudhi, T. (2016). Water use and productivity of a sorghum-cowpea-bottle gourd intercrop system. Agricultural Water Management, 165, 82-96.
Chisanga, C.B., Phiri, E., Shepande, C., & Sichingabula, H. (2015). Evaluating CERES maize model using planting dates and nitrogen fertilizer in Zambia. Journal of Agricultural Science, 7(3), 1-19.
Daramy, M.A., Sarkodie-Addo, J., & Dumbuya, G. (2016). The effects of nitrogen and phosphorus fertilizer application on crude protein, nutrient concentration and nodulation of cowpea in Ghana. ARPN Journal of Agricultural and Biological Science, 11(12), 470-480.
Dokoohaki, H., Gheysari, M., Mousavi, S.F., & Mirlatifi, S.M. (2012). Estimation soil water content under deficit irrigation by using DSSAT. Water and Irrigation Management, 2(1), 1-14 (in Persian).
Ghadami Firouzabadi, A., Shahnazari, A., & Raeini, M. (2015). The Economic analysis of deficit irrigation management and determination of the optimum depth of irrigation in sunflower plant. Journal of Water and Soil Conservation, 21(6), 255-268 (in Persian).
Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J.W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G.Y., & Jones, J.W. (2019). The DSSAT crop modeling ecosystem. In: p.173-216 (K.J. Boote, editor), Advances in crop modeling for a sustainable agriculture, Burleigh Dodds Science Publishing, Cambridge, United Kingdom.
Jamieson, P.D., Porter, J.R., & Wilson, D.R. (1991). A test of the computer simulation model ARCWHEAT on wheat crops grown in New Zealand. Field Crops Research, 27, 337-350.
Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., & Ritchie, J.T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235-265.
Lomeling, D., Mogga, M., Abdelrahman, A., Mathew Otwari, S., & Yahya, M. (2014). Using the cropgro model to predict phenology of cowpea under rain-fed conditions. International journal of plant and soil science, 3(7), 824-844.
Mondani, F., Karami, p., & Ghobadi, R. (2021). Simulation of moisture regimes effect on maize (Zea mays) growth and yield in Kermanshah region by CERES-Maize model. Journal of Crop Science Research in Arid, 3(1), 39-56 (in Persian).
Nouri, M., Hoogenboom, G., Bannayan, M., & Homaee, M. (2022). CSM‐CERES‐wheat sensitivity to evapotranspiration modeling frameworks under a range of wind speeds. Water, 14(19), 2-20.
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. (2014). Response of plants to water stress. Frontiers in Plant Science, 5(86), 1-8.
Prakasham, S.M., Ramanathan, S.P., Annadurai, K., & Prabina, B. (2019). Influence of irrigation regimes and organics on the productivity and quality of vegetable cowpea (Vigna unguiculata (L.) Walp). Journal of Pharmacognosy and Phytochemistry, 8(3), 3391-3393.
Priestley, C.H.B., & Physics, R.J.T.A. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92.
Ramezani-Vasokolaei, M., Darzi Naftchali, A., Saber Ali, F., & Kazemi, Sh. (2022). Evaluation and Simulation of Water Table Management Influence on Rice Yield and its Components Involving DSSAT Model. Iranian Journal of Irrigation and Water Engineering, 12(4), 157-175 (in Persian).
Sepaskhah, A.R., Tavakoli, A., & Mousavi, F. (2006). Principles and applications of deficit irrigation. Publications of Iran's National Irrigation and Drainage Committee, 288 pages (in Persian).
Shardendu, K., Singh, K., & Reddy, R. (2011). regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (vigna unguiculata L walp.) under drought. Journal of Photochemistry and Photobiology,105, 40-50.
Singh, A.K., Tripathy, R., & Chopra, U.K. (2008). Evaluation of CERES wheat and crop system models for water-nitrogen interactions in wheat crop. Agricultural Water Management, 95, 776-786.
Soler, C.M.T., Sentelhas, P.C., & Hoogenboom, G. (2007). Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27(2), 165-177.
Tsuji, G.Y., Uehara, G., & Balas, S. (1994). DSSAT V3. Honolulu. University Of Hawaii, 3V. 256 pages.
Walpole, R.E., Myers, R.M., & Myers, S.L. (1998). Probability and statistics for engineers and scientists. 6th Edition: New Jersey, 823 pages.
White, J., & Hoogenboom, G. (2010). Crop response to climate: ecophysiological models. In: Lobell D, Burke M, editors. Climate change and food security, advances in global change research, 37, 59-83.
Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of American Meteorology Society, 63, 1309-1313.
Yang, J.M., Yang, J.Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural Systems, 127, 81-89.