بابائیان، ایمان، مدیریان، راهله، خزانهداری، لیلی، کوهی، منصوره، کوزهگران، سعیده، فلامرزی، یاشار، کریمیان، مریم، و ملبوسی، شراره (1400). چشمانداز بارش و دمای کشور در قرن 21 با استفاده از سناریوهای اقتصادی-اجتماعی SSP. گزارش نهایی طرح تحقیقاتی، پژوهشکده اقلیمشناسی مشهد.
جعفری، انیس، کیوانبهجو، فرشاد، و مصطفیزاده، رئوف (1396). مقایسۀ مؤلفههای مختلف وضعیت سلامت زیستبوم در حوزۀ آبخیز ایریل، استان اردبیل. مهندسی اکوسیستم بیابان، 6(16)، 92-81. doi:10.22052/6.16.81
جهانداری، جاوید، حجازی، رخشاد، جوزی، سیدعلی، و مرادی، عباس (1401). اثرات توسعه شهری بر الگوهای مکانی، زمانی خدمت اکوسیستمی ذخیره کربن در حوزة آبخیز بندرعباس با نرمافزار InVEST.
مدلسازی و مدیریت آب و خاک، 2(4)، 91-106. doi:
10.22098/mmws.2022.11069.1097
حزباوی، زینب، پرچمی، ناهیده، علایی، نازیلا، و بابایی، لیلا (1399). ارزیابی و تحلیل وضعیت سلامت آبخیز کوزهتپراقی، استان اردبیل.
حفاظت منابع آب و خاک، 9(3)، 121-142. dor:
20.1001.1.22517480.1399.9.3.8.0
حزباوی، زینب، و صادقی، سید حمیدرضا (1396). مدل مفهومی بنیه، ساختار و انعطافپذیری (VOR). ترویج و توسعه آبخیزداری، 5(16)، 393-373.
خروشی، سعید، مصطفیزاده، رئوف، اسمعلیعوری، اباذر، و رئوف، مجید (1396). ارزیابی تغییرات زمانی و مکانی شاخص سلامت هیدرولوژیک رودخانه در حوزههای آبخیز استان اردبیل.
اکوهیدرولوژی، 4(2)، 379-393. doi:
10.22059/ije.2017.61475
صادقی، سید حمیدرضا، حزباوی، زینب، و غلامعلیفرد، مهدی (1398). پهنهبندی پویایی سلامت آبخیز شازند بر اساس دبیهای مشخصه کمآبی و پرآبی.
مهندسی و مدیریت آبخیز، 11(3)، 608-589.
doi:10.22092/ijwmse.2018.120288.1427
غفاری، حیدر، و گرجی، منوچهر (1400). ارزیابی اثر فرسایش خاک بر عملکرد گندم دیم با استفاده از مدل SWAT.
مدلسازی و مدیریت آب و خاک، 1(3)، 53-66. doi:
10.22098/mmws.2021.9267.1029
ناصری، فرزانه، آذری، محمود، و دستورانی، محمدتقی (1397). شبیهسازی جریان و رسوب حوزة آبخیز سد فریمان با استفاده از مدل SWAT و الگوریتم ژنتیک.
نشریه آب و خاک (علوم و صنایع کشاورزی)، 32(3)، 447-462. doi:
10.22067/jsw.v32i3.68900
References
Abbaspour, K.C. (2009). User manual for SWAT-CUP2, SWAT calibration and uncertainty analysis programs. Swis Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, 95 pages.
Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Klve, B. (2015). A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. doi:10.1016/j.jhydrol.2015.03.027
Ahn, S.R., & Kim, S.J. (2019). Assessment of watershed health, vulnerability and resilience for determining protection and restoration Priorities. Environmental Modelling & Software, 122, 1-19. doi:10.1016/j.envsoft.2017.03.014
Alilou, H., Rahmati, O.P., Singhc, V., Choubin, B., Pradhan, B., Keesstra, S., Ghiasi, S.S., & Sadeghi, S.H.R. (2019). Evaluation of watershed health using Fuzzy-ANP approach considering geoenvironmental and topo-hydrological criteria. Journal of Environmental Management, 232, 22-36. doi:10.1016/j.jenvman.2018.11.019
Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., & Kannan, N. (2012). SWAT: model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
Babaian, A., Modirian, R., Khazanedari, L., Kohi, M., Kozegran, S., Flamerzi, Y., Karimian, M., & Malboosi, Sh. (2021). Outlook of rainfall and temperature of iran in the 21st century using SSP socio-economic scenarios. Final report of research project, Climatology Research Institute. [In Persian]
Briak, H., Moussadek, R., Aboumaria, K., & Mrabet, R. (2016). Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. International Soil and Water Conservation Research, 4(3), 177-185. doi:10.1016/j.iswcr.2016.08.002
Costanza, R. (1992). Toward an operational definition of health. Pp. 239–256, In: Ecosystem Health—New Goals for Environmental Management, Norton BD (editors), Washington, DC: Inland Press.
Costanza, R. (2012). Ecosystem health and ecological engineering. Ecological Engineering, 45, 24–29. doi:10.1016/j.ecoleng.2012.03.023
Ding, Y., Wang, W., Chang, X., & Zhao, S. (2008). Ecosystem health assessment in Inner Mongolia region based on remote sensing and GIS. The international archives of the photogrammetry, remote sensing and spatial information sciences, XXXVII, Part B1, 1029-1034.
Duan, Z., Song, X., & Liu, J. (2009). Application of SWAT for sediment yield estimation in a mountainous agricultural basin. In Geoinformatics, 17th International Conference on (1-5).
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., & Rummukainen, M. (2014). Evaluation of climate models. Pp. 741-866, In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor,S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.), Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Fallah-Ghalhari, G., Shakeri, F., & DadashiRoudbari, A. (2019). Impacts of climate changes on the maximum and minimum temperature in Iran. Theoretical and Applied Climatology, 138(3-4), 1539-1562. doi:10.1007/s00704-019-02906-9
Ghafari, H., & Gorji, M. (2021). Evaluation of soil erosion effects on rainfed wheat (Triticum aestivum) yield using SWAT model. Water and Soil Management and Modeling, 1(3), 53-66. doi:10.22098/mmws.2021.9267.1029 [In Persian]
Hazbavi, Z., Parchami, N., Alaei, N., & Babaei, L. (2020). Assessment and Analysis of the KoozehTopraghi Watershed health status, Ardabil Province, Iran, Journal of Water and Soil Resources Conservation, 9(3), 121-142. dor:20.1001.1.22517480.1399.9.3.8.0 [In Persian]
Hazbavi, Z., & Sadeghi, S.H.R. (2017). Watershed health characterization using reliability–resilience–vulnerability conceptual framework based on hydrological responses. Land Degradation & Development, 28(5), 1528-1537. doi:10.1002/ldr.2680
Hazbavi, Z., & Sadeghi, S.H.R. (2017). Watershed health (part three): vigor, organization and resilience conceptual model. Promotion and Development of Watershed Management, 5(16), 373-393. [In Persian]
Hazbavi, Z., Sadeghi, S.H.R., Gholamalifard, M., & Davudirad, A.A. (2020). Watershed health assessment using the pressure–state–response (PSR) framework. Land Degradation & Development, 31(1), 3-19. doi:10.1002/ldr.3420
Hijioka, Y., Lin, E., Pereira, J.J., Corlett, R., Cui, X., Insarov, G., Surjan, A., Field, C., Barros, V., & Mach, K. (2014). Asia Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pp. 351-365, In: IPCC Working Group II Contribution to AR5, Cambridge, U. Press, Cambridge UK and New York, USA, 139(3).
Holling, C.S. (1986). The resilience of terrestrial ecosystems; local surprise and global change. Pp. 292-320, In: Clark, W.C. and Munn, R.E., Sustainable Development of the Biosphere.
IPCC, (2007). Summary for policymakers. in climate change 2007: impacts, adaptation and vulnerability. Pp. 7-22, In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., and Hanson, C.E. Eds., Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press.
Jafari, A., Keivan-behjou, F., & Mostafazadeh, R. (2017). Comparing the conditions of different Ecosystem Health components in Iiril watershed, Ardabil Province. Desert Ecosystem Engineering Journal, 6(16), 81-92. doi:10.22052/6.16.81 [In Persian]
Jahandari, J., Hejazi, R., Jozi, S.A., & Moradi, A. (2022). Impacts of urban expansion on spatio-temporal patterns of carbon storage ecosystem service in Bandar Abbas Watershed using InVEST software. Water and Soil Management and Modelling, 2(4), 91-106. doi:10.22098/mmws.2022.11069.1097 [In Persian]
Khorooshi, S., Mostafazadeh, R., Esmali Ouri, A., & Raoof, M. (2017). Spatiotemporal assessment of the hydrologic river health index variations in Ardabil Province Watersheds. Iranian journal of Ecohydrology, 4(2), 379-393. doi:10.22059/ije.2017.61475 [In Persian]
Mageau, M.T., Costanza, R., & Ulanowicz, R.E. (1998). Quantifyingthe trends associated with developing ecosystems. Ecological Modeling, 1-22. doi:10.1016/s0304-3800(98)00092-1
MEA, (2005). Ecosystems and Human Well-Being. Washington DC: Island Press, 155 pages.
Moriasi, D.N., Gitau, M.W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763-1785. doi:10.13031/trans.58.10715
Naseri, F., Azari, M., & Dastoorani, M.T. (2018). Simulation of stream flow and sediment yield in Fariman Dam Watershed using SWAT model and genetic algorithm. Water and Soil Journal (Agricultural Sciences and Industries), 32(3), 447-462. doi:10.22067/jsw.v32i3.68900 [In Persian]
Rathjens, H., Bieger, K., Srinivasan, R., Chaubey, I., & Arnold, J.G. (2016). CMhyd user manual. Doc. Prep. Simulated Clim. Change Data Hydrol, Impact Study.
Ray, A., Pandey, V.P., & Thapa, B.R. (2022). An assessment of climate change impacts on water sufficiency: The case of Extended East Rapti watershed, Nepal. Environmental Research, 113434. doi:10.1016/j.envres.2022.113434
Redman, C.L. (1999). Human impact on ancient environments. University of Arizona Press, Tucson, AZ, 239 pages.
Ross, E.R. & Randhir, T.O. (2022). Effects of climate and land use changes on water quantity and quality of coastal watersheds of Narragansett Bay. Science of the total environment, 807, 151082. doi:10.1016/j.scitotenv.2021.151082
Sadeghi, S.H.R., & Hazbavi, Z. (2017). Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran). Science of the Total Environment, 587, 168-176. doi:10.1016/j.scitotenv.2017.02.098
Sadeghi, S.H.R., Hazbavi, Z., & Gholamalifard, M. (2019). Zonation of health dynamism for the Shazand Watershed based on low and high flow discharges. Watershed Engineering and Management, 11(3), 589-608. doi:10.22092/ijwmse.2018.120288.1427 [In Persian]
Sharafati, A., Nabaei, S., & Shahid, S. (2020). Spatial assessment of meteorological drought features over different climate regions in Iran. International Journal of Climatology, 40(3), 1864-1884. doi:10.1002/joc.6307
Singh, R., Kayastha, S.P., & Pandey, V.P. (2022). Climate change and river health of the Marshyangdi Watershed, Nepal: An assessment using integrated approach. Environmental Research, 114104. doi:10.1016/j.envres.2022.114104
Suo, A.N., Xiong, Y.C., Wang, T.M., Yue, D.X., & Ge, J.P. (2008). Ecosystem health assessment of the Jinghe River watershed on the huangtu plateau. International Association for Ecology and Health, 5, 127–136. doi:10.1007/s10393-008-0167-z
Wohl, E., Angermeier, P.L., Bledsoe, B., Kondolf, G.M., MacDonnell, L., Merritt, D.M., Palmer, M.A., Poff, N.L., & Tarboton, D. (2005). River restoration. Water Resources Research, 41(10301), 1-12.
Xiao, R., Liu, Y., Fei, X., Yu, W., Zhang, Z., & Meng, Q. (2019). Ecosystem health assessment: A comprehensive and detailed analysis of the case study in coastal metropolitan region, eastern China. Ecological indicators, 98, 363-376. doi:10.1016/j.ecolind.2018.11.010
Xiaoyan, L., Yuanfeng, Z., & Jianzhong, Z. (2006). Healthy Yellow River’s essence and indicators. Journal of Geographical Sciences, 16(3), 259-270. doi:10.1007/s11442-006-0301-1
Xu, F.L., Jorgensen, S.E., & Shu, T. (1999). Ecological indicators for assessing freshwater ecosystem health. Ecological Modeling, 116, 77–106. doi:10.1016/s0304-3800(98)00160-4
Yang, J., Reicher, P., Abbaspour, K.C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chao he Basin in China. Journal of Hydrology, 358 (1–2), 1-23. doi:10.1016/j.jhydrol.2008.05.012