الماسیه، کامران، ذرتیپور، امین، و نگارش، کاظم (1399). بررسی مطلوبیت رویشگاه و طراحی ارتباطهای رویشگاهی گیاه مرتعی گل گندم بهبهانی (
Centaurea pabotii) در جنوب غربی ایران بهعنوان مهاجم مزارع گندم.
مرتع و آبخیزداری، 73(3)، 598-578.
doi:10.22059/jrwm.2020.294764.1447
خواجه الدین، سید جمال الدین، و یگانه، حسن (1389). بررسی رابطة گونههای گیاهی منطقة شکار ممنوع کرکس با عوامل پستی و بلندی و اقلیم. مرتع، 4(3)، 380-391.
ضرابی، مهدی، حقدادی، رسول، و یوسفی، حسین (1396). مدلسازی مطلوبیت رویشگاه پستة ارگانیک (وحشی) (
Pistacia vera) با استفاده از روش آنتروپی حداکثر (MaxEnt) در منطقة جنگلی سرخس (زیرحوزة گنبدلی استان خراسان رضوی).
اکوهیدرولوژی، 4(3)، 824-817. doi:
10.22059/ije.2017.62636
عبدالهی، جلال، و نادری، حسین (1391). بررسی اثر متغیرهای توپوگرافی و خصوصیات فیزیکو-شیمیایی خاک بر نحوة عملکرد پارامترهای مؤثر بر رشد Artemisia sieberi در مراتع استپی ندوشن یزد. پژوهشهای آبخیزداری (پژوهش و سازندگی)، 25(4)، 62-52.
قلینژاد، بهرام، جعفری، محمد، زارع چاهوکی، محمدعلی، آذرنیوند، حسین، و پوربابایی، حسن (1393). بررسی اثر عوامل محیطی و مدیریتی بر گسترش تیپهای گیاهی (مطالعة موردی: مراتع سارال استان کردستان).
مرتع و آبخیزداری، 67(2)، 279-288.
doi:10.22059/jrwm.2014.51832
مظفریان، ولی الله. (1394). شناخت گیاهان دارویی و معطر ایران. چاپ اول، نشر تهران فرهنگ معاصر، 1444 صفحه.
مومنی دامنه، جواد، اسماعیلپور، یحیی، غلامی، حمید، و فراشی، آزیتا (1400). پیشبینی مناطق مناسب رویش گونة آنغوزه (
Ferula assa-foetida L.) در شمال شرق ایران با استفاده از مدل بیشینه آنتروپی.
تحقیقات مرتع و بیابان ایران، 28(3)، 578-592.
doi:10.22092/ijrdr.2021.125016
مومنی دامنه، جواد، اسماعیلپور، یحیی، غلامی، حمید، و فراشی، آزیتا (1400). کاربرد مدل حداکثر آنتروپی در تعیین رویشگاه بالقوة گونه Astracantha gossypina (Fisch.) Podlech در شمال شرق ایران. حفاظت زیستبوم گیاهان، ۹(19)، ۲17-۲36.
References
Abdollahi, J., & Naderi, H. (2012). Soil and topographical variation influencing the growing factors of artemisia sieberi in steppic rangeland, Nodoushan-Yazd. Watershed Researchs (Research and Construction), 25(4), 52-62. [In Persian]
Akihiko, I., & Hajima, T. (2020). Biogeophysical and biogeochemical impactsof land-use change simulated by MIROC-ES2L. Progress in Earth and Planetary Science, 7(1), 1-15. doi:10.1186/s40645-020-00372-w
Almasieh, K., Zoratipour, A., & Negaresh, K. (2020). Habitat suitability and connectivity assessment for a range plant Behbahanian knapweed (Centaurea pabotii) in Southwest of Iran as an invader for wheat fields. Journal of Range and Watershed Managment, 73(3), 578-598. doi:10.22059/jrwm.2020.294764.1447 [In Persian]
Arazi, S., & Sarhangzadeh, J. (2020). Habitat suitability of Francolinus francolinus in Sistan region. Journal of Environmental Science Studies, 5(4), 3115-3123.
Ardestani, E.G., Tarkesh, M., Bassiri, M., &. Vahabi, M.R. (2015). Potential habitat modeling for reintroduction of three native plant species in central Iran. Journal of Arid Land, 7(3), 381- 390. doi:10.1007/s40333-014-0050-4
Barnes, P.W., & Harrison, A.T. (1982). Species distribution and community organization in a Nebraska Sandhills mixed prairie as influenced by plant/soil water relationships. Oecologia (Berlin), (52), 192–201. doi:10.1007/bf00363836
Bellard C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377.
Cheaib, A., Badeau, V., Boe, J., Chuine, I., Delire, C., Dufrene, E., Franc, C.,. Gritti, E.S, Legay, M. (2012). Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecology Letters, 15, 533–544. doi:10.1111/j.1461-0248.2012.01764.x
Cheng, L., Lek, S., Lek-Ang, S., & Li, Z. (2012). Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica-Ecology and Management of Inland Waters, 42(2), 127-136. doi:10.1016/j.limno.2011.09.007
Diaz-Varela R.A., Colombo, R., Meroni, M., Calvo-Iglesias, M.S., Buffoni, A., & Tagliaferri, A. (2010). Spatio-temporal analysis of alpine ecotones: a spatial explicit model targeting altitudinal vegetation shifts. Ecological Modelling, 221, 621–633. doi:10.1016/j.ecolmodel.2009.11.010
Ernakovich, J.G., Hopping, K.A., Berdanier, A.B., Simpson, R.T., Kachergis, E.J., Steltzer, H., & Wallenstein, M.D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20, 3256–3269. doi:10.1111/gcb.12568
Esmaili, R., Montazeri, M., Esmaeilnejad, M., & Saber Truth, A. (2011). Climatic zoning of Khorasan Razavi using multivariate statistical methods. Climatology Research, 2(7-8), 43-56.
Feeley, K.J., Silman, M.R., Bush, M.B., Farfan, W., Cabrera, K.G., Malhi, Y., Meir, P., Revilla, N.S., Quisiyupanqui, M.N.R., & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38, 783–791. doi:10.1111/j.1365-2699.2010.02444.x
Fielding, A.H., & Bell, J.F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Journal of Environmental Conservation, 24 (2), 38-49. doi:10.1017/s0376892997000088
Flagmeier, M., Long, D.G., Genney, D.R., Hollingsworth, P.M., Ross, L.C., & Woodin, S.J. (2014). Fifty years of vegetation change in oceanic-montane liverwort-rich heath in Scotland. Plant Ecology Diversity, 7, 457– 470.
Galton, F. (1892). Finger prints Macmillan. London, 216 pages.
Gauch, H.G., & Whittaker, R.H. (1972). Coenocline simulation. Journal Ecology, (53), 446–451. doi:10.2307/1934231
Gholinejad, B., Jaffari, M., Zarechahuki, M.A., Azarnivand, H., & Pourbabaei, H. (2014). Environmental and managerial factors effects on plant species distribution (Case study: Saral rangelands of Kurdistan province). Journal of Range and Watershed Management, 67(2), 279-288. doi:10.22059/jrwm.2014.51832 [In Persian]
Golestaneh, S.R., Karampour, F., & Farrar, N. (2012). Introduction of the destructive agents affecting wild almond Amygdalus scoparia forests in Koh-Siah Dashti area in Bushehr Province. Journal of Forest and Range Protection Research, 10, 153-164.
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters , 8, 993–1009. doi:10.1111/j.1461-0248.2005.00792.x
Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M., & Tatian, M. (2017). Forecasts of climate change effects on Amygdalus scoparia potential distribution by using ensemble modeling in Central Zagros. Journal of RS and GIS for Natural Resources, 8(3), 1-14.
Heikkinen, R.K., Luoto, M., Araújo, M.B., Virkkala, R., Thuiller, W., & Sykes, M.T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment, 30(6), 751-777. doi:10.1177/0309133306071957
Helm, A., Hanski, I., & Pärtel, M. (2006). Slow response of plant species richness to habitat loss and fragmentation. Ecology letters, 9(1), 72-77. doi:10.1111/j.1461-0248.2005.00841.x
Hirzel, A.H., & Guisan, A. (2002). Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling, 157 (2–3), 331–341. doi:10.1016/s0304-3800(02)00203-x
Jarvie, S., & Svenning, J.C. (2018). Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1761), 170-201. doi:10.1098/rstb.2017.0446
Khajeddin, S.J., & Yeganeh, H. (2010). The relationship between plant species in no-hunting area of vulture with postal and elevation factors and climate. Journal of Rangeland, 4(3), 380-391. [In Persian]
Kumari, P., Wani, I.A., Khan, S., Verma, S., Mushtaq, S., Gulnaz, A., & Paray, B.A. (2022). Modeling of valeriana wallichii habitat suitability and niche dynamics in the Himalayan Region under anticipated climate change. Biology, 11, 498. doi:10.3390/biology11040498
Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., & Farashi, A. (2022). Prediction of potential habitats of Astracantha gossypina (Fisch.) Using the maximum entropy model in regional scale. Journal of Plant Ecosystem Conservation, 9(19), 217-236. [In Persian]
Momeni Damaneh, J., Esmaeilpour, Y., Gholami, H., & Farashi, A. (2021). Properly predict the growth of (Ferula assa-foetida L.) in northeastern Iran using the maximum entropy model. Journal of Range and Desert Research of Iran, 28(3), 587-592. doi:10.22092/ijrdr.2021.125016 [In Persian]
Mozzafarian, V. )2012(. Recognition of medicinal and aromatic plants of Iran. 1th Edition: Tehran Farhang-e Moaser publications, 1444 pages. [In Persian]
Oksanen, J., & Minchin, P.R. (2002). Continuumtheory revisited: what shape are species responses along ecological gradients. Ecological Modelling, (157), 119–129. doi:10.1016/s0304-3800(02)00190-4
Pearson, R.G., Thuiller, W., Araújo, M.B., Martinez‐Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T.P., & Lees, D.C. (2006). Model‐based uncertainty in species range prediction. Journal of Biogeography, 33(10), 1704-1711. doi:10.1111/j.1365-2699.2006.01460.x
Phillips, S.J., Anderson, R.P., & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190 (3), 231-259. doi:10.1016/j.ecolmodel.2005.03.026
Piri Sahragard, M., Ajorlo, M., & Karami, P. (2020). Predicting impacts offuture climate change on the distribu-tion and ecological dimension of Amygdalus scoparia Spach. Italian Journal of Agrometeorology, (2), 117-130.
Polechová, J., & Storch, D. (2008). Ecological Niche. Encyclopedia of Ecology, (2), 1088-1097.
Sarhangzadeh, J. (2019). Habitat suitability modeling for Juniper (Juniperus foetidissima) in Arasbaran Biosphere Reserve. Journal of Forest Research and Development, 5(1), 93-112.
Shrestha, U.B., Sharma, K.P., Devkota, A., Siwakoti, M., Shrestha, B.B. (2018). Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators, 95, 99-107. doi:10.1016/j.ecolind.2018.07.009
Smeeton, N.C. (1985). Early history of the kappa statistic. Biometrics, 41(3), 77-95.
Sproull, G.J., Quigley, M.F., Sher, A., Gonzalez, E. (2015). Long-term changes in composition, diversity and distribution patterns in four herbaceous plant communities along an elevational gradient. Journal of Vegetation Science, 26, 552–563. doi:10.1111/jvs.12264
Stockwell, D., & Peters, D. (1999). The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13(2), 143–158. https://doi.org/10.1080/136588199241391
Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. doi:10.1126/science.3287615
Thuiller, W. (2014). Editorial commentary on BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global change Biology, 20(12), 3591-3592. doi:10.1111/gcb.12728
Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M.B. (2009). Biomod– a platform for ensemble forecasting of species distributions. Ecography, 32 (3), 369-373. doi:10.1111/j.1600-0587.2008.05742.x
Vandermeer, J.H. (1972). Niche theory. Annual Review of Ecology and Systematics, (3), 107-132.
Walther, G.R., Post. E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389-395.
Wiens, J.A., Stralberg, D., Jongsomjit, D., Howell, C.A., & Snyder, M.A. (2009). Niches, models, and climate change: assessing the assumptions and uncertainties. Proceedings National Academy Sciences USA, 106, 19729–19736. doi:10.1073/pnas.0901639106
Yi, Y.J., Cheng, X., Yang, Z.F., & Zhang, S.H.. (2016). Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering, (92), 260-269. doi:10.1016/j.ecoleng.2016.04.010
Zarkami, R., Ahmadi, M., & Abedini, A. (2021). Habitat modeling of (eichhornia crassipes) in some wetlands of Guilan province. Journal of Plant Research, 34(2), 275-286. doi:10.1007/s13157-021-01405-w
Zarrabi, M., Haqdadi, R., & Yousefi, H. (2017). Modeling desirability of organic pistachio habitat (Pistacia Vera) using maxent method in Sarakhs forest area (under Gonbadli basin of Khorasan Razavi province). Ecohydrology, 4(3), 817-824. doi:10.22059/ije.2017.62636 [In Persian]
Zhang, X., Yuan, Y., Zhu, Z., Ma, Q., Yu, H., Li, M., Ma, J., Yi, S., He, X., & Sun, Y. (2021). Predicting the distribution of oxytropis ochrocephala bunge in the source region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sensing, 13, 5129. doi:10.3390/rs13245129