اصغری سراسکانرود، صیاد، صفری، شیوا، و ملانوری، الهام (1400). اندازهگیری عمق برف و ارزیابی ارتباط مؤلفه دما با ویژگیهای برف در حوزة آبخیز لیقوان.
نشریه پژوهشهای حفاظت آب و خاک، 28(4)، 187-206. doi:
10.22069/jwsc.2022.19570.3502
اصغری سراسکانرود، صیاد، و مدیرزاده، ریحانه (1399). برآورد تغییرات عمق برف در سطح شهرستان اردبیل و سرعین با استفاده از دادههای ماهواره Sentinel1 با روش تداخلسنجی راداری.
تحقیقات منابع آب ایران، 16(1)، 394-407. dor:
20.1001.1.17352347.1399.16.1.26.0
بهرامی، مهناز، فتحزاده، علی، تقیزاده مهرجردی، روحالله، و زارع چاهوکی، محمدعلی (1395). بررسی مقیاس پارامترهای ژئومورفومتری بر پیشبینی پراکنش مکانی عمق برف.
هیدروژئومورفولوژی، 3(6)، 95-113. dor:
20.1001.1.23833254.1395.3.6.6.0
حقیزاده، علی، کیانی، آرمان، و کیانی، میلاد. (1396). ارزیابی کارایی روشهای زمین آماری بهمنظور برآورد توزیع مکانی عمق و چگالی برف در مناطق کوهستانی (مطالعه موردی: حوضة آبخیز گوش بالا مشهد).
هیدروژئومورفولوژی، 4(12)، 45-66. dor:
20.1001.1.23833254.1396.4.12.3.6
سیفی هوشنگ، و فیضیزاده، بختیار (1398). کاربرد روش تداخلسنجی و تصاویر سنجش از دوری رادار در برآورد عمق برف و آب قابل استحصال از آن در حوضه آبریز یامچی.
تحقیقات منابع آب ایران، 15(1)، 341-355. dor:
20.1001.1.17352347.1398.15.1.25.2
شریفی، محمدرضا، آخوندعلی، علی محمد، پرهمت، جهانگیر، و محمدی، جهانگرد (1386). ارزیابی دو روش معادلة همبستگی خطی و کریجینگ معمولی بهمنظور برآورد توزیع مکانی عمق برف در حوزه آبخیز صمصامی. علوم و مهندسی آبخیزداری، 1(1)، 38-24.
شریفی، محمدرضا، آخوندعلی، علی محمد، پرهمت، جهانگیر، و محمدی، جهانگرد (1386). بررسی تأثیر ارتفاع، جهت و تندی شیب بر عمق برف در حوضة صمصامی. تحقیقات منابع آب ایران، 3(3)، 69-72.
شریفی، محمدرضا، آخوندعلی، علی محمد، پرهمت، جهانگیر، و محمدی، جانگرد (1386). کاربرد تحلیل خوشهای بهمنظور تخمین عمق برف (مطالعه موردی: حوضة صمصامی). پژوهش کشاورزی: آب، خاک و گیاه در کشاورزی، 7(4)، 25-37.
منجذب مرودشتی، شهربانو، مزیدی، احمد، امیدوار، کمال، و مظفری، غلامعلی (1400). بررسی تاثیر پارامترهای جوی بر پوشش برف حوضة آبخیز کوهرنگ. نیوار، 45(112-113)، 56-66. doi:10.30467/nivar.2021.263731.1175
References
Asghari Saraskanroud, S., & Modirzadeh, R. (2020). Estimation of snow depth changes in Ardabil and Sarein cities using Sentinel 1 satellite data with radar interferometric method. Iran-Water Resources Research, 16(1), 394-407. dor:20.1001.1.17352347.1399.16.1.26.0 [In Persian]
Asghari Saraskanroud, S., Safari, S.H., & Mollanuri, E. (2022). Measuring snow depth and evaluating the relationship between temperature component and snow characteristics in the Liqvan watershed. Journal of Water and Soil Conservation, 28(4), 187-206. doi:10.22069/jwsc.2022.19570.3502 [In Persian]
Bahrami, M., Fathizadeh, A., Zaree Chahooki, M.A., & Taghizadeh Mehrjerdi, R. (2016). Scale effect geomorphometric parameters of spatial pattern of snow depth. Hydrogeomorphology, 3(6), 95-113. dor:20.1001.1.23833254.1395.3.6.6.0 [In Persian]
Balk, B., & Elder, K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resources Research, 36(1), 13–26. doi:10.1029/1999wr900251
Beniston, M., Keller, F., & Goyette, S. (2003). Snow pack in the Swiss Alps under changing climatic conditions: an empirical approach for climate impacts studies. Theoretical and Applied Climatology, 74, 19–31. doi:10.1007/s00704-002-0709-1
Bloschl, G., Kirnbauer, R., & Gutknecht, D. (1991). Distributed Snowmelt Simulations in an Alpine Catchment: 1. Model Evalution on the Basis of Snow Cover Patterns. Water Resources Research, 27(12), 171-179. doi:10.1029/91wr02250
Camdevyren, H., Demyr, N., Kanik, A., & Keskyn, S. (2005). Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs. Ecological Modelling, 181(4), 581-589. doi:10.1016/j.ecolmodel.2004.06.043
Choularton, T.W., & Perry, S.J. (1986). A model of the orographic enhancement of snowfall by the seeder-feeder mechanism. Quarterly Journal of the Royal Meteorological Society, 112(472), 335–345. doi:10.1256/smsqj.47203
Cline, D.W., Bales, R.C., & Dozier, J. (1998). Estimating the spatial distribution of snow inmountain basins using remote sensing and energy balance modeling. Water Resources Research, 34(5), 1275-1285. doi:10.1029/97wr03755
Cybenko, G. (1989). Approximation by superposition of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4), 303-314.
Daly, C., Neilson, R.P., & Phillips, D.L. (1994). A statisticaltopographic model for mapping climatological precipitation over mountainous terrain. Journal of Appled Meteorology, 33, 140–158. doi:10.1175/1520-0450(1994)033<0140:astmfm>2.0.co;2
Elder, K., Dozier, J., & Michaelsen, J. (1991). Snow accumulation and distribution in an Alpin Watershed. Water Resources Research, 27(7), 1541-1552. doi:10.1029/91wr00506
Elder, K., & Dozier, J. (1990). Improving methods for measurement and estimation of snow storage in alpine watersheds, Hydrology in Mountainous Regions. I- Hydrological Measurements; the Water Cycle, IAHS, 193, 147-156.
Elder, K., Rosenthal, R., & Davis, R.E. (1995). Estimating the spatial distribution of snow water equivalent in a mountain watershed. Hydrology Processes, 12, 3627–3649. doi:10.1002/(sici)1099-1085(199808/09)12:10/11<1793::aid-hyp695>3.0.co;2-k
Erickson, T.A., Williams, M.W., & Winstral, A. (2005). Persistence of topographic controls on the spatial distribution of snow in rugged mountain, Colorado, United States. Water Resources Research, 41, 1-17. doi:10.1029/2003wr002973
Essery, R., Martin, E., Douville, H., Fernandez, A., & Brun, E. (1999). A comparison of four snow models using observations from an alpine site. Climate Dynamics, 15(8), 583–593. doi:10.1007/s003820050302
Ganjkhanlo, H., Vafakhah, M., Zeinivand, H., & Fathzadeh, A. (2020). The effect of different sampling schemes on estimation precision of snow water equivalent (SWE) using geo statistics techniques in a semi-arid region of Iran. Geocarto International, 35(16), 1-14. doi:10.1080/10106049.2019.1581267
Gupta, R.P., Haritashya, U.K., & Singh, P. (2005). Mapping Dry/Wet Snow Cover in the Indian Himalayas Using IRS Multispectral Imagery. Remote Sensing of Environment, 97(4), 458-469. doi:10.1016/j.rse.2005.05.010
Haghizadeh, A., Keiani, A., & Keiani, M. (2017). Evaluating the efficiency of geostatistical methods in order to estimate the spatial distribution of snow depth and density in mountainous areas (case study: Gosh Bala watershed of Mashhad). Hydrogeomorphology, 4(12), 45-66. dor:20.1001.1.23833254.1396.4.12.3.6 [In Persian]
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Netural Networks, 2(5), 359-366. doi:10.1016/0893-6080(89)90020-8
Johnson, R.A., & Wichern, D.W. (1982). Applied multivariate statistical analysis. 3rd Ed., Prentice- Hall Inc., Englewood Cliffs, USA.
Kuras, P.K., Weiler, M., & Alila, Y. (2008). The spatiotemporal variability of runoff generation and groundwater dynamics in a snow-dominated catchment. Hydrology, 352(1-2), 50–66. doi:10.1016/j.jhydrol.2007.12.021
Lehning, M., Lowe, H., Ryser, M., & Raderschall, N. (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resources Research, 44(7), 1-19. doi:10.1029/2007wr006545
Marchand, W.D., & Killingtveit, A. (2001). Analyses of the relation between spatial snow distribution and terrain characteristics. 58th Estern Snow Conference Ottawa, Ontario, Canada.
Martinec, J., Rango, A., & Roberts, R. (2008). The Snowmelt Runoff Model (SRM) User’s Manual. Edited by Enrique Gómez-Landesa & Max P, Bleiweiss, Updated Edition for Windows, WinSRM Version 1.11, USDA Jornada Experimental Range, New Mexico State University, Las Cruces, NM 88003, U.S.A.
Minasny, B., & McBratney, A.B. (2006). A conditioned Hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32(9),1378–1388. doi:10.1016/j.cageo.2005.12.009
McKay, G.A., & Gray, D.M. (1981). The distribution of the snow cover. In: Handbook of Snow, edited by: Gray, D. and Hale, D., Pergamon Press Canada Ltd., 153–190.
Molotch, N.P., Colee, M.T., Bales, R.C., & Dozier, J. (2005). Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data independent variable selection. Hydrological Processes, 19(7), 1459-1479. doi:10.1002/hyp.5586
Monjazeb Marvdashti, SH., Mazidi, A., Omidvar, K., & Mozafari, GH.A. (2021). Investigation of the effect of atmospheric parameters on the snow cover of Koohrang watershed. Nivar, 45(112-113), 56-66. doi:10.30467/nivar.2021.263731.1175 [In Persian]
Mott, R., Scipion, D., Schneebeli, M., Dawes, N., Berne, A., & Lehning, M. (2013). The effect of airflow dynamics on small-scale snow-fall patterns in mountainous terrain. Journal of Geophysical Research; Atmospheres, in revision.
Patil, A., Singh, G., Rudiger, C.H. (2019). A novel approach for the retrieval of snow water equivalent using SAR data. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 3233-3236.
Pomeroy, J.W., & Gray, D.M. (1995). Snowcover Accumulation, Relocation and Management. National Hydrology Research Institute Science Report No. 7, Environment Canada, Saskatoon.
Rango, A., Walker, A., & Goodinson, B. (2000). Remote Sensing in Hydrology and Water Management (eds by Schultz G & Ergman E), Springer Berlin Heidelberg.
Seifi, H., & Feizizadeh, B. (2019). Application of interferometric method and radar remote sensing images in estimating snow depth and extractable water in Yamchi watershed. Iran- Water Resources Research, 15(1), 341-355. dor:20.1001.1.17352347.1398.15.1.25.2 [In Persian]
Shaban, A., Faour, G., Khawlie, M., & Abdallah, C. (2004). Remote sensing application to estimate the volume of water in the form of snow on Mount Lebanon. Hydrological Sciences Journal, 49(4), 643-653. doi:10.1623/hysj.49.4.643.54432
Sharifi, M.R., Akhoondali, A.M., Porhemmat, J., & Mohammadi, J. (2007). Evaluation of two methods of linear correlation equation and normal kriging in order to estimate the spatial distribution of snow depth in Samsami watershed. Iran-Watershed Management Science & Engineering, 1(1), 24-38. [In Persian]
Sharifi, M.R., Akhoondali, A.M., Porhemmat, J., & Mohammadi, J. (2007). Application of Cluster Analysis for Estimating Snow Depth(Case Study: Samsami Basin). Journal of Agricultural Research, 7(4), 25-37. [In Persian]
Sharifi, M.R., Akhoondali, A.M., Porhemmat, J., & Mohammadi, J. (2008). Effect of elevation and aspect on snow depth at samsami basin. Iran-Water Resouces Reserarch, 3(3), 69-72. [In Persian]
Trujillo, E., Ramirez, J.A., & Elder, K.J. (2007). Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resources Research, 43, 1–17. doi:10.1029/2006wr005317
Winstral, A., Elder, K., & Davis, R.E. (2002). Spatial snow modeling of wind-redistributed snow using terrain based parameters. Journal of Hydrometeorology, 3, 524-538. doi:10.1175/1525-7541(2002)003<0524:ssmowr>2.0.co;2
Zhang, H., Zhang, F., Che, T., & Wang, S. (1998). Comparative evaluation of VIIRS daily snow cover product with MODIS for snow detection in China based on ground observations. Science of The Total Environment,138-156. doi:10.1016/j.scitotenv.2020.138156
Zhoua, X., Xie, H., & Hendrickx, J.M.H. (2005). Statistical evaluation of remotely sensed snow-cover products with constraints from streamflow and snotel measurements. Elsevier Remote Sensing of Environment, 94(2), 214-231. doi:10.1016/j.rse.2004.10.007