طبقه‌بندی پوشش اراضی استان بوشهر با استفاده از تصاویر ترکیب داده‌های لندست 8 و مودیس

نوع مقاله : پژوهشی

نویسندگان

1 دانشیار/ گروه منابع طبیعی و محیط زیست، واحد بوشهر، دانشگاه آزاد اسلامی، بوشهر، ایران

2 استادیار پژوهشی/ بخش تحقیقات مرتع، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

اطلاعات کاربری و پوشش زمین برای پایش، برنامه‌ریزی و مدیریت پویا و توسعه معقول زمین حیاتی است. اخیراً به‌دلیل فعالیت‌های انسانی، اطلاعات پوشش زمین به‌شدت تغییر کرده است. بنابراین، پایش به‌موقع، دقیق و مؤثر بر اراضی برای حفاظت، توسعه منطقی و استفاده از منابع زمین اهمیت زیادی دارد. پایش مستمر سنجش از دور پوشش اراضی در مناطق به‌سرعت در حال توسعه به‌طور فزاینده­ای به داده‌های سنجش از دور در وضوح زمانی و مکانی بالا بستگی دارد. در بسیاری از موارد دستیابی به تصاویر کافی با تفکیک زمانی و مکانی از یک سنجنده دشوار است. در این پژوهش از مدل ادغام زمانی-مکانی ESTARFM (مدل ادغام بازتاب تطبیقی مکانی-زمانی بهبود یافته) برای ترکیب داده‌های لندست 8 و مودیس استفاده شد. این روش دارای سه مرحله است، 1) بهبود مدل ادغام بازتاب تطبیقی مکانی-زمانی تعیین ترکیب داده بهینه برای استخراج نوع پوشش، 2) تقسیم‌بندی تصویر و استخراج پوشش زمین و ارزیابی دقت از روش نمونة میدانی استفاده شد. 3) سپس اطلاعات پوشش اراضی استان بوشهر با استفاده از روش طبقه‌بندی شیء‌گرا استخراج شد. در این مطالعه، روش پیشنهادی به‌صورت مطالعه موردی در استان بوشهر استفاده شد. نتایج نشان داد که دقت کلی و ضرایب کاپا در روش شیء‌گرا به‌ترتیب 93.34 درصد و 0.86 و دقت کاربر/تولیدکننده پوشش اراضی در روش پیکسل‌گرا بیش از 80 درصد بوده است. رویکرد ارائه شده یک روش فنی دقیق و کارآمد برای استخراج مؤثر اطلاعات کاربری اراضی در مناطق ناهمگن ارائه می‌کند. در پژوهش حاضر، از یک روش تحلیل جامع برای ادغام داده‌های چندمنبعی استخراج اطلاعات کاربری و پوشش زمین استفاده شد. این روش برای بهینه‌سازی کاربری/پوشش زمین سودمند است و پشتیبانی فنی و داده‌ای را برای پایش بر کاربری و پوشش زمین در مناطق حفاظت ‌شده و منطقه در دست توسعه در دوره‌های آینده فراهم می‌کند.

کلیدواژه‌ها

موضوعات


امیری، ف.، و طباطبایی، ط. (1400). طبقه‌بندی و تحلیل روند تغییر کاربری اراضی محیط شهری با استفاده از تصاویر چندزمانه لندست: مطالعۀ موردی در منطقه بوشهر. مدیریت اراضی، 9(1)، 167-186.
جهانداری، ج.، حجازی، ر.، جوزی، س. ع.، و مرادی، ع. (1401). اثرات توسعه شهری بر الگوهای مکانی، زمانی خدمت اکوسیستمی ذخیره‌کربن در حوزه آبخیز بندرعباس با نرم‌افزارInVEST . مدل‌سازی و مدیریت آب و خاک، 2(4)، 91-106.
حسینی، س. ع.، خسروی، ح.، غلامی، ح.، اسماعیل‌پور، ی.، و سردا، آ. (1399). آنالیز تغییرات کاربری اراضی بر تخریب سرزمین و بیابان‌زایی در مناطق ساحلی جنوب ایران. مرتع و آبخیزداری، 73(2)، 305-320.
دهقانی، ت.، احمدپری، ه.، و امینی، ع. (1401). ارزیابی تغییرات کاربری اراضی با استفاده از تصاویر ماهواره‌ای چندطیفی و شبکه عصبی مصنوعی. مدل‌سازی و مدیریت آب و خاک، 3(2)، 18-35.
صالحی، ن.، اختصاصی، م. ر.، و طالبی، ع. (1398). پیش‌بینی روند تغییرات کاربری اراضی با استفاده از مدل زنجیره مارکوف CA-Markov (مطالعة موردی: حوزه آبخیز صفارود رامسر)، سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 10(1)، 106-120.
فخار، م.س.، و نظری، ب. (1401). ارزیابی و صحت‌سنجی شاخص‌های پایش شوری در دشت قزوین. مدل‌سازی و مدیریت آب و خاک، 2(3)، 51-40.
Amiri, F., & Tabatabaie, T. (2021). Classification and analysis of land use changes in urban environments using multi-temporal landsat images: A case study of Bushehr. Land Management Journal, 9(1), 167-186 (in Persian).
Aslan, N., & Koc-San, D. (2016). Analysis of relationship between urban heat island effect and land use/cover type using landsat 7 ETM+ and Landsat 8 OLI images. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41, 821-828.
Bisquert, M., Bégué, A., & Deshayes, M. (2015). Object-based delineation of homogeneous landscape units at regional scale based on MODIS time series. International Journal of Applied Earth Observation and Geoinformation, 37, 72-82.
Coulter, L.L., Stow, D.A., Tsai, Y.H., Ibanez, N., Shih, H.C., Kerr, A., Benza, M., Weeks, J.R., & Mensah, F. (2016). Classification and assessment of land cover and land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. Remote Sensing of Environment, 184, 396-409.
Dehghani, T., Ahmadpari, H., & Amini, A. (2022). Assessment of land use changes using multispectral satellite images and artificial neural network. Water and Soil Management and Modelling. 3(2), 18-35 (in Persian).
Deng, Z., Zhu, X., He, Q., & Tang, L. (2019). Land use/land cover classification using time series Landsat 8 images in a heavily urbanized area. Advances in Space Research, 63(7), 2144-2154.
Emelyanova, I.V., McVicar, T.R., Van Niel, T.G., Li, L.T., & van Dijk, A.I.J.M. (2013). Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sensing of Environment, 133, 193-209.
Fakhar, M.S., & Nazari, B. (2022). Evaluation and validation of salinity monitoring indices in the Qazvin plain. Water and Soil Management and Modelling, 2(3), 40-51 (in Persian).
Fu, P., & Weng, Q. (2016). A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205-214.
Fu, Y., Li, J., Weng, Q., Zheng, Q., Li, L., Dai, S., & Guo, B. (2019). Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Science of The Total Environment, 666, 274-284.
Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-2218.
Godinho, S., Guiomar, N., & Gil, A. (2016). Using a stochastic gradient boosting algorithm to analyse the effectiveness of Landsat 8 data for montado land cover mapping: Application in southern Portugal. International Journal of Applied Earth Observation and Geoinformation, 49, 151-162.
Guan, H., Li, J., Chapman, M., Deng, F., Ji, Z., & Yang, X. (2013). Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. International Journal of Remote Sensing, 34(14), 5166-5186.
Hao, G., Wu Bo Zhang, L., Fu, D., & Li, Y. (2016). Temporal and spatial variation analysis of the area of Siling Co Lake in Tibet based on ESTARFM (1976–2014). Journal of Geographical Information Science, 18(6), 833-846.
Hao, P., Wang, L., Niu, Z., Aablikim, A., Huang, N., Xu, S., & Chen, F. (2014). The potential of time series merged from Landsat-5 TM and HJ-1 CCD for crop classification: a case study for Bole and Manas Counties in Xinjiang, China. Remote Sensing, 6(8), 7610-7631.
Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F., & White, J.C. (2009). A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8), 1613-1627.
Hosseini, S.A., Khosravi, H., Gholami, H., Esmaeilpour, Y., & Cerda, A. (2020). Analysis of landuse changes on land degradation and desertification in coastal regions of southern Iran. Journal of Range and Watershed Managment, 73(2), 305-320 (in Persian).
Jahandari, J., Hejazi, R., Jozi, S.A., & Moradi, A. (2022). Impacts of urban expansion on spatio-temporal patterns of carbon storage ecosystem service in Bandar Abbas Watershed using InVEST software. Water and Soil Management and Modelling, 2(4), 91-106 (in Persian).
Johnson, B.A., & Iizuka, K. (2016). Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines. Applied Geography, 67, 140-149.
Kennedy, R.E., Yang, Z., & Cohen, W.B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. Land Trendr-Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897-2910.
Knauer, K., Gessner, U., Fensholt, R., & Kuenzer, C. (2016). An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes. Remote Sensing, 8(5), 425.
Lamine, S., Petropoulos, G.P., Singh, S.K., Szabó, S., Bachari, N.E.I., Srivastava, P.K., & Suman, S. (2018). Quantifying land use/land cover spatio-temporal landscape pattern dynamics from Hyperion using SVMs classifier and FRAGSTATS®. Geocarto international, 33(8), 862-878.
Mack, B., Leinenkugel, P., Kuenzer, C., & Dech, S. (2017). A semi-automated approach for the generation of a new land use and land cover product for Germany based on Landsat time-series and Lucas in-situ data. Remote Sensing Letters, 8(3), 244-253.
Melville, B., Lucieer, A., & Aryal, J. (2018). Object-based random forest classification of Landsat ETM+ and WorldView-2 satellite imagery for mapping lowland native grassland communities in Tasmania, Australia. International Journal of Applied Earth Observation and Geoinformation, 66, 46-55.
Munshi‐South, J., Zolnik, C.P., & Harris, S.E. (2016). Population genomics of the Anthropocene: Urbanization is negatively associated with genome‐wide variation in white‐footed mouse populations. Evolutionary applications, 9(4), 546-564.
Naeem, S., Cao, C., Fatima, K., Najmuddin, O., & Acharya, B.K. (2018). Landscape greening policies-based land use/land cover simulation for Beijing and Islamabad-An implication of sustainable urban ecosystems. Sustainability, 10(4), 1049.
Novack, T., Esch, T., Kux, H., & Stilla, U. (2011). Machine learning comparison between WorldView-2 and QuickBird-2-simulated imagery regarding object-based urban land cover classification. Remote Sensing, 3(10), 2263-2282.
Pontius, J.R. (2018). PontiusMatrix21.xlsx (Workbook). wwwclarkuedu/~rpontius.
Robert, S., Fox, D., Boulay, G., Grandclément, A., Garrido, M., Pasqualini, V., Prévost, A., Schleyer-Lindenmann, A., & Trémélo, M.L. (2019). A framework to analyse urban sprawl in the French Mediterranean coastal zone. Regional Environmental Change, 19(2), 559-572.
Salehi, N., Ekhtesasi, M.R., & Talebi, A. (2019). Predicting locational trend of land use changes using CA-Markov model (Case study: Safarod Ramsar watershed). Journal of RS and GIS for Natural Resources, 10(1), 106-120 (in Persian).
Shahtahmassebi, A.R., Lin, Y., Lin, L., Atkinson, P.M., Moore, N., Wang, K., Shan, H., Lingyan, H., Jiexia, W., & Shen, Z. (2017). Reconstructing historical land cover type and complexity by synergistic use of landsat multispectral scanner and corona. Remote Sensing, 9(7), 682.
Shiferaw, H., Bewket, W., Alamirew, T., Zeleke, G., Teketay, D., Bekele, K., Schaffner, U., & Eckert, S. (2019). Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia. Science of The Total Environment, 675, 354-366.
Singha, M., Wu, B., & Zhang, M. (2016). An object-based paddy rice classification using multi-spectral data and crop phenology in Assam, Northeast India. Remote Sensing, 8(6), 479.
Sukawattanavijit, C., Chen, J., & Zhang, H. (2017). GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(3), 284-288.
Thenkabail, P.S., Schull, M., & Turral, H. (2005). Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sensing of Environment, 95(3), 317-341.
Wang, Y., Ziv, G., Adami, M., Mitchard, E., Batterman, S.A., Buermann, W., Schwantes Marimon, B., Marimon Junior, B.H., Matias Reis, S., Rodrigues, D., & Galbraith, D. (2019). Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sensing of Environment, 221, 474-488.
Wu, M., Niu, Z., Wang, C., Wu, C., & Wang, L. (2012). Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. Journal of Applied Remote Sensing, 6(1), 063507.
Yang, G., Chao, S., Tsou, J.Y., & Zhang, Y. (2019). Satellite image-based methods of spatiotemporal analysis on sustainable urban land use change and the driving factors: a case study in Caofeidian and the suburbs, China. Sustainability, 11(10), 2927.  
Zhang, M., & Zeng, Y. (2015). Mapping paddy fields of Dongting Lake area by fusing Landsat and MODIS data. Transactions of the Chinese Society of Agricultural Engineering, 31(13), 178–185.
Zhang, M., Zeng, Y., & Zhu, Y. (2017). Wetland mapping of Donting Lake Basin based on time-series MODIS data and object-oriented method. Journal of Remote Sensing, 21(3), 479-492.
Zhu, X., Chen, J., Gao, F., Chen, X., & Masek, J.G. (2010). An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11), 2610-2623.
Zhu, Z., Fu Y., Woodcock, C.E., Olofsson, P., Vogelmann, J.E., Holden, C., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, 243-257.
دوره 3، شماره 2
تیر 1402
صفحه 143-156
  • تاریخ دریافت: 06 شهریور 1401
  • تاریخ بازنگری: 29 شهریور 1401
  • تاریخ پذیرش: 29 شهریور 1401
  • تاریخ اولین انتشار: 29 شهریور 1401