References
Almasi, A., Fatemi, S. E., & Eghbalzadeh, A. (2024). The prediction of monthly rainfall in Kermanshah Synoptic Station under the social-economic scenarios of the sixth climate change report.
Advanced Technologies in Water Efficiency,
4(1), 40-64. doi:
10.22126/atwe.2024.10245.1097
Ali, S., Khan, S. D., Haq, M. U., Li, J., Virrantaus, K., & Chen, Y. (2023). Spatial downscaling of GRACE data based on XGBoost model for improved understanding of hydrological droughts in the Indus Basin Irrigation System (IBIS).
Remote Sensing, 15(4), 873. doi:
10.3390/rs15040873
Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D., & Matonse, A. H. (2018). Examination of change factor methodologies for climate change impact assessment.
Water Resources Research, 54(2), 1067-1086.
doi:10.1029/2010WR009104
Sobhani, B., Eslahi, M., & Babaeian, I. (2017). Comparison of statistical downscaling in climate change models to simulate climate elements in Northwest Iran.
Physical Geography Research,
49(2), 301-325. doi:
10.22059/jphgr.2017.62847
Sachindra, D. A., Huang, F., Barton, A., & Perera, B. J. C. (2018). Statistical downscaling of precipitation using machine learning techniques. Atmospheric Research, 212, 240–258. doi:
10.1016/j.atmosres.2018.05.022
Chen, J., Brissette, F. P., Lucas-Picher, P., & Caya, D. (2020). Impacts of spatial resolution of global climate models on the statistical downscaling of precipitation.
Climate Dynamics, 55(7-8), 1815-1837.
doi:10.1007/s00382-020-05347-8
Chen, S., Wen, Z., Yang, P., Zhang, T., & Chen, J. (2022). Challenges and perspectives for high-resolution precipitation downscaling.
Earth and Space Science, 9(11), e2022EA002453.
doi:10.1029/2022EA002453
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM.
doi:10.1145/2939672.2939785
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). doi:
10.1145/2939672.2939785
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. doi:
10.1145/2939672.2939785
Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. Routledge. doi:10.4324/9780203774441
Daneshkhah, A., Ghorbani, M. A., Naganna, S. R., & Ghazvinian, P. H. (2020). Statistical downscaling of precipitation using machine learning techniques: A case study of Urmia Lake basin, Iran.
Theoretical and Applied Climatology, 140(3-4), 1215-1231. doi:
10.1007/s00704-020-03122-8
Diouf, I., Tramblay, Y., & Vischel, T. (2019). Predictor selection for statistical downscaling of rainfall in senegal using general circulation model outputs.
Theoretical and Applied Climatology, 137(3-4), 2757-2771. doi:
10.1007/s00704-019-02796-9
Dong, J., Zeng, W., Wu, L., Huang, J., Gaiser, T., & Srivastava, A. K. (2023). Enhancing short-term forecasting of daily precipitation using numerical weather prediction bias correcting with XGBoost in different regions of China. Engineering Applications of Artificial Intelligence, 117, 105579. doi:
10.1016/j.engappai.2022.105579
El Htiti, M., Ouagabi, A., Lazaar, M., Bouziane, M., Hayani, A., & Guenoun, J. (2023). Machine-Learning-Based Downscaling of Hourly ERA5-Land Air Temperature over Mountainous Regions. Atmosphere, 14(4), 610. MDPI. doi:
10.3390/atmos14040610
Fouladi Nasrabad, M., Amirabadizadeh, M. and Dastourani, M. (2024). Performance Evaluation of Two General Circulation Models for Downscaling Average Temperature in Birjand County. Integrated Watershed Management, 4(1), 30-45. doi:10.22034/iwm.2024.2013786.1109
Ghahreman, B., Daneshvar, M. R. M., Zare, H., & Ebrahimi, M. (2022). Evaluating the performance of machine learning algorithms for seasonal precipitation downscaling in Iran.
Water Resources Management, 36(1), 157-177.
doi:10.1007/s11269-021-03004-5
Giri, R. K., Swain, S., Pingale, S. M., & Meshram, C. (2021). Statistical downscaling and projection of future temperature and precipitation using SVM, relevance vector machine and gaussian process regression over Narmada River basin, India.
Stochastic Environmental Research and Risk Assessment, 35(6), 1189-1213.
doi:10.1007/s00477-020-01949-x
Dong, J., Zeng, W., Wu, L., Huang, J., Gaiser, T., & Srivastava, A. K. (2023). Enhancing short-term forecasting of daily precipitation using numerical weather prediction bias correcting with XGBoost in different regions of China. Engineering Applications of Artificial Intelligence, 117, 105579. doi:10.1016/j.engappai.2022.105579
Georgiades, M., Boucher, O., Lamarque, J.-F., & Quaas, J. (2025). Global projections of heat stress at high temporal resolution using machine learning. Earth System Science Data, 17(3), 1153–1172. doi:10.5194/essd-17-1153-2025
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance metrics: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. doi:10.1016/j.jhydrol.2009.08.003
Gutiérrez, J.M., Maraun, D., Widmann, M., Huth, R., Hertig, E., Benestad, R., Roessler, O., Wibig, J., Wilcke, R., Kotlarski, S. and San Martín, D. (2019). An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross‐validation experiment.
International Journal of Climatology, 39(9), 3750-3775.
doi:10.1002/joc.5462
Hassanzadeh, E., Zhang, H., Murphy, J. M., & Matthews, A. J. (2021). Improving precipitation downscaling using deep learning: A study with focus on the Maritime Continent.
Journal of Geophysical Research: Atmospheres, 126(23), e2021JD034869.
doi:10.1029/2021JD034869
IPCC. (2021).
Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. doi:
10.1016/j.quaint.2017.06.020
Khosravi, A., Safavi, H. R., & Mirnezami, H. (2025). Developing an ensemble machine learning framework for enhanced climate projections using CMIP6 data in the Middle East. npj Climate and Atmospheric Science, 8(1), Article 103. doi:10.1038/s41612-025-01033-9
Li, X., Chen, Y., Duan, Z., & Liu, J. (2022). Improving satellite precipitation estimates using XGBoost algorithm: A comparative study across different climatic regions. Remote Sensing of Environment, 268, 112778. doi:
10.3390/w14142150
Maraun, D., & Widmann, M. (2018).
Statistical downscaling and bias correction for climate research. Cambridge University Press.
doi:10.1017/9781107588783
Maraun, D., Huth, R., Gutiérrez, J. M., Martín, D. S., Dubrovsky, M., Fischer, A., Hertig, E., Soares, P. M. M., Bartholy, J., Pongracz, R., Widmann, M., Casado, M. J., Ramos, P., & Bedia, J. (2019). The VALUE perfect predictor experiment: evaluation of temporal variability.
International Journal of Climatology, 39(9), 3786-3818. doi:
10.1002/joc.5222
Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review.
Water, 10(11), 1536. doi:
10.3390/w10111536
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., Esch, M. and Fast, I. (2019). Developments in the MPI-ESM1-2-HR‐M Earth System Model version 1.2 (MPI-ESM1-2-HR‐ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4), 998–1038. doi:
10.1029/2018MS001400
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M., Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine, T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E., Stemmler, I., Tian, F. et al (2018) A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10 (7). pp. 1383-1413. ISSN 1942-2466. doi:10.1029/2017ms001217
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6
Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Gonzalez, S., & Laudon, H. (2024). Applications of XGBoost in water resources engineering: A systematic literature review (Dec 2018–May 2023).
Environmental Modelling & Software, 174, 105971.
doi:10.1016/j.envsoft.2024.105971
Nourani, V., Razzaghzadeh, Z., Baghanam, A. H., & Molajou, A. (2019). ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method.
Theoretical and Applied Climatology, 137(3-4), 2111-2126. doi:
10.1007/s00704-018-2722-5
Okkan, U., & Kirdemir, U. (2018). Statistical downscaling of monthly precipitation using linear regression, conditional metric-based models and spline interpolation.
International Journal of Climatology, 38(5), 2421-2439.doi:
10.1002/joc.5344
Parsa, M., Dehghani, M., Rezaei, M., & Klove, B. (2023). Downscaling precipitation using machine learning algorithms over Lake Urmia Basin, Iran.
Water, 15(7), 1383.
doi:10.3390/w15071383
Prasad, R. K., Ahmad, S., Ali, S., Adhikary, S. K., & Mohanty, U. C. (2018). Statistical downscaling of temperature using machine learning techniques over the Himalayan region.
Theoretical and Applied Climatology, 131(3-4), 1175-1190. doi:
10.1007/s00704-016-2004-z
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth system science.
Nature, 566(7743), 195-204. doi:
10.1038/s41586-019-0912-1
Sachindra, D. A., Huang, F., Barton, A., & Perera, B. J. C. (2014). Statistical downscaling of general circulation model outputs to precipitation—part 1: calibration and validation.
International Journal of Climatology, 34(13), 3264-3281.
doi:10.1002/joc.3915
Sachindra, D. A., Ng, A. W. M., Muthukumaran, S., & Perera, B. J. C. (2018). Impact of predictor selection on performance of statistical downscaling models.
International Journal of Climatology, 38(2), 923-945. doi:
10.1002/joc.5224
Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour, N., & Chau, K. W. (2020). Predicting standardized precipitation index using machine learning models.
Engineering Applications of Computational Fluid Mechanics, 14(1), 1192-1206.
doi:10.1080/19942060.2020.1800921
Wilby, R. L., & Wigley, T. M. L. (1997). Downscaling general circulation model output: A review of methods and limitations.
Progress in Physical Geography, 21(4), 530-548. doi:
10.1177/030913339702100403
Zhu, X., Li, W., Chen, J., Ma, Y., Liu, H., & Zhu, D. (2025). Exploring machine learning approaches for precipitation downscaling. Geo-spatial Information Science. Advance online publication. doi:10.1080/10095020.2025.2477547
Zare, H., Ghahreman, B., Daneshvar, M. R. M., & Ebrahimi, M. (2021). Performance assessment of support vector machine and artificial neural network models in statistical downscaling of daily precipitation (case study: Urmia Lake basin, Iran).
Water Supply, 21(5), 2139-2155.
doi:10.2166/ws.2021.008
Zhang, M., Wang, K., Liu, Y., & Li, Y. (2022). Monthly streamflow forecasting based on XGBoost using decomposition-integration strategy.
Water Resources Management, 36(10), 3659-3676. doi:
10.1007/s11269-022-03203-8
Zhang, X., Tang, G., Wang, X., Song, Z., & Hong, Y. (2024). Downscaling satellite-derived soil moisture in the Three North region using ensemble machine learning and multiple-source knowledge. Hydrology and Earth System Sciences Discussions, hess-2024-129. Copernicus Publications. doi:10.5194/hess-2024-129
Zhang, Y., Wu, Z., Liu, K., Lan, T., Chen, J., & Li, Z. (2023). Enhancing spatial resolution of GNSS-R soil moisture retrieval through XGBoost algorithm-based downscaling approach: A case study in the Southern United States.
Remote Sensing, 15(18), 4576. doi:
10.3390/rs15184576
Zhao, L., Feng, T., Li, X., Chen, S., & Zhang, J. (2022). Modelling Soil Temperature by Tree-Based Machine Learning Methods in Different Climatic Regions of China. Applied Sciences, 12(10), 5088. MDPI. doi:
10.3390/app12105088