منابع
چمن پیرا، غلامرضا، زهتابیان، غلامرضا، احمدی، حسن و ملکیان، آرش (1393). بررسی تأثیر خشکسالی بر منابع آب زیرزمینی بهمنظور مدیریت بهینه بهره برداری، مطالعه موردی: دشت الشتر. مهندسی و مدیریت آبخیز، 6 (1)، 20–10. doi: 10.22092/ijwmse.2014.101733
کالیراد، زهرا، ملکیان، آرش و معتمد وزیری، بهارک (1392). تعیین الگوی توزیع منابع آب زیرزمینی (مطالعة موردی: حوزه آبخیز الشتر، استان لرستان)،
پژوهشنامه مدیریت حوزه آبخیز، 4(7)، 57-69.
https://jwmr.sanru.ac.ir/article-1-236-fa.htmlv
References
Adnan, R., Mostafa, R., Islam, A., Gorgij, A., Kuriqi, A. & Kisi, O. (2021). Improving drought modeling using hybrid random vector functional link methods,
Water, 13(23), 1-22.
doi: 10.3390/w13233379
Aghelpour, P. & Varshavian, V. (2020). Forecasting different types of droughts simultaneously using multivariate standardized precipitation index (MSPI), MLP neural network, and imperialistic
Competitive Algorithm (ICA), Complexity, 2021, ID: 6610228, pp. 16.
doi: 10.1155/2020/6610228
Aghelpour, P., Bahrami, H. & Varshavian, V. (2021). Hydrological drought forecasting using multi-scalar stream flow drought index, stochastic models and machine learning approaches, in northern Iran,
Stochastic Environmental Research and Risk Assessment, 35, 1615-1635.
doi: 10.1007/s00477-020-01949-z
Belayneh, A., Adamowski, J., Khalil, B., & Quilty, J. (2016). Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction. Atmospheric research, 172, 37-47.
doi: 10.1016/j.atmosres.2015.12.017
Belayneh, A., Adamowski, J., & Khalil, B. J. S. W. R. M. (2016). Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustainable Water Resources Management, 2(1), 87-101.doi: 10.1007/s40899-015-0040-5
Bishop, C.M. (1995). Neural networks for pattern recognition, Oxford university press, 477 pages.
Bloomfield, J. P. & Marchant, B. P. (2013). Analysis of groundwater drought building on the standardized precipitation index approach, Hydrology Earth System Sciences, 17(12), 4769–4787. doi: 10.5194/hess-17-4769-2013
Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control, 5th Edition: John Wiley & Sons, 720 pages.
Chamanpira, G., Zehtabian, G., Ahmadi, H. & Malekian, A. (2014). Effect of drought on groundwater resources in order to optimize utilization management, case study: Plain Alashtar. Watershed’s Engineering and Management, 6(1), 10-20. doi: 10.22092/ijwmse.2014.101733 [In Persian]
Dehghani, M., Saghafian, B., Rivaz, F., & Khodadadi, A. (2017). Evaluation of dynamic regression and artificial neural networks models for real-time hydrological drought forecasting.
Arabian Journal of Geosciences, 10(12), 1-13.
doi: 10.1007/s12517-017-2990-4
Demuth, H. & Beale, M. (2000). Neural network toolbox for use with MATLAB, Sixth edition: MathWorks, 846 pages.
Feng, K., Su, X., Zhang, G., Javed, T. & Zhang, Z. (2020). Development of a new integrated hydrological drought index (SRGI) and its application in the Heihe River Basin, China, Theoretical and Applied Climatology, 141(1), 43-59. doi: 10.1007/s00704-020-03184-6
Gu, L., Chen, J., Yin, J., Xu, C. Y. & Chen, H. (2020). Drought hazard transferability from meteorological to hydrological propagation. Journal of Hydrology, 585, doi: 10.1016/j.jhydrol.2020.124761
Hao, Z., AghaKouchak, A. (2013). Multivariate standardized drought index: A parametric multi-index model,
Advances in Water Resources, 57, 12-18.
doi: 10.1016/j.advwatres.2013.03.009
Hernandez, A., Fujita, H., Hayashi, T. & Perez, H. (2020). Forecasting of COVID19 per regions using ARIMA models and polynomial functions. Applied soft computing, 96. doi: 10.1016/j.asoc.2020.106610
Haykin, S. (1999). Neural networks: A comprehensive foundation, 2th edition: IEEE, 700 pages.
Kalirad, Z., Malekian, A. & Motamedvaziri, B. (2013). Determining of groundwater resources distribution pattern (Case Study: Alashtar basin, Lorestan province), Journal of Watershed Management Research, 4(7), 57-69, dor: JR_JWMR-4-7_005 [In Persian]
Kao, S. C. & Govindaraju, R. S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1-2), 121-134. doi: 10.1016/j.jhydrol.2009.10.029
Karimi, M., Melesse, A. M., Khosravi, K., Mamuye, M. & Zhang, J. (2019). Analysis and prediction of meteorological drought using SPI index and ARIMA model in the Karkheh River Basin, Iran. Extreme Hydrology and Climate Variability, 343-353. doi: 10.1016/B978-0-12-815998-9.00026-9
Khan, M. M. H., Muhammad, N. S. & El-Shafie, A. (2020). Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting.
Journal of Hydrology, 590, doi:
10.1016/j.jhydrol.2020.125380
Mbatha, N. & Bencherif, H. (2020). Time series analysis and forecasting using a novel hybrid LSTM data-driven model based on empirical wavelet transform applied to total column of ozone at Buenos Aires, Argentina (1966–2017). Atmosphere, 11(5), 457. doi: 10.3390/atmos11050457
Mishra, A.K. & Desai, V.R. (2005). Spatial and temporal drought analysis in the Kansabati river basin, India. International Journal of River Basin Management, 3, 31-41. doi: 10.1080/15715124.2005.9635243
McKee, T. B., Doesken, N. J. & Kleist, J. (1993). The relationship of drought frequency and duration to time scales, 8th Conference on Applied Climatology, Anahiem, California, pp. 179-183.
Mehdizadeh, S., Fathian, F. & Adamowski, J. F. (2019). Hybrid artificial intelligence-time series models for monthly stream flow modeling. Applied Soft Computing, 80, 873-887. doi: 10.1016/j.asoc.2019.03.046
Mohamadi, S., Sammen, S. S., Panahi, F., Ehteram, M., Kisi, O., Mosavi, A. & Al-Ansari, N. (2020). Zoning map for drought prediction using integrated machine learning models with a nomadic people optimization algorithm. Natural Hazards, 104, 537-579. doi: 10.1007/s11069-020-04180-9
Ndlovu, M.S., & Demlie, M. (2020). Assessment of meteorological drought and wet conditions using two drought indices across KwaZulu-natal province, South Africa.
Atmosphere, 11(6), 623.
doi: 10.3390/atmos11060623
Nourani, V., Razzaghzadeh, Z., Baghanam, A. H. & Molajou, A. (2019). ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method. Theoretical and Applied Climatology, 137, 1729-1746. doi: 10.1007/s00704-018-2686-z
Seo, J.Y., & Lee, S.I. (2019). Spatio-temporal groundwater drought monitoring using multi-satellite data based on an artificial neural network,
Water, 11(9), 1953.
doi: 10.3390/w11091953
Shukla, S., & Wood. A.W. (2008). Use of a standardized runoff index for characterizing hydrologic drought.
Geophysical Research Letters, 35(2).
doi: 10.1029/2007GL032487
Soh, Y. W., Koo, C. H., Huang. Y. F., & Fung. K. F. (2018). Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat River Basin, Malaysia. Computers and Electronics in Agriculture, 144, 164-173. doi: 10.1016/j.compag.2017.12.002
Tsakiris, G., & Vangelis, H. (2004). Towards a drought Watch System based on Spatial SPI. Water Resources Management, 18, 1-12. doi: 10.1023/B:WARM.0000015410.47014.a4
Van Loon, A. F. (2015). Hydrological drought explained.
WIREs WATER, 2(4), 359-392. doi:
10.1002/wat2.1085
Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M. & Livneh, B. (2020). Large contribution from anthropogenic warming to an emerging North American megadrought.
Science, 368(6488), 314-318. doi:
10.1126/science.aaz9600
Wu, X., Zhou, J., Yu, H., Liu, D., Xie, K., Chen, Y., Hu, J., Sun, H. & Xing, F. (2021). The Development of a hybrid Wavelet-ARIMA-LSTM model for precipitation amounts and drought analysis.
Atmosphere, 12, 74.
doi: 10.3390/atmos12010074
Wu, Z., Yin, H., He, H. & Li, Y. (2022). Dynamic-LSTM hybrid models to improve seasonal drought predictions over China. Journal of Hydrology, 615, part A, doi: 10.1016/j.jhydrol.2022.128706
Xu, D., Zhang, Q., Ding, Y. & Zhang, D. (2022). Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting, Environmental Science and Pollution Research, 29, 4128-4144. doi: 10.1007/s11356-021-15325-z
Yisehak, B. & Zenebe, A. (2021). Modeling multivariate standardized drought index based on the drought information from precipitation and runoff: a case study of Hare watershed of Southern Ethiopian Rift Valley Basin.
Modeling Earth Systems and Environment, 7(2), 1005-1017.
doi: 10.1007/s40808-020-00923-6
Zhang, L. & Singh, V. P. (2019). Copulas and their applications in water resources engineering, 1st edition: Cambridge university press, 616 pages.
Zhang, Y., Li, W., Chen, Q., Pu, X., & Xiang, L. (2017). Multi-models for SPI drought forecasting in the north of Haihe River Basin, China, Stochastic. Environmental Research and Risk Assessment, 31, 2471–2481. doi: 10.1007/s00477-017-1437-5
Zubaidi, S. L., Dooley, J., Alkhaddar, R. M., Abdellatif, M., Al-Bugharbee, H. & Ortega-Martorell, S. (2018). A Novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks. Journal of Hydrology, 561, 136-145. doi: 10.1016/j.jhydrol.2018.03.047