منابع
ستاری، محمدتقی، شیرینی، کیمیا، و جاویدان، سحر (1403). ارزیابی کارائی روشهای کاهش پارامترها در بهبود دقت مدلسازی شاخص کیفی آب در رودخانة قزل اوزن با استفاده از الگوریتمهای یادگیری ماشین. مدلسازی و مدیریت آب و خاک، 4(2)، 89-104. doi: 10.22098/mmws.2023.12434.1241
عالمپور رجبی، فرناز، قربانی، محمد علی، و اسدی، اسماعیل (1403). مدلسازی فرآیند تبخیر با استفاده از الگوریتم هیبریدی پرندة کوت و شبکة عصبی مصنوعی. مدلسازی و مدیریت آب و خاک، 4(2)، 279-294.
doi: 10.22098/mmws.2023.12692.1266
محمدی، مجتبی، جهانتیغ، حسین، و ذوالفقاری، فرهاد. (1403). پیشبینی ماهانة تبخیر از تشت با استفاده از رویکردهای انفرادی و ترکیبی مدلهای دادهکاوی در مناطق خشک. مدلسازی و مدیریت آب و خاک، 4(2)، 279-294.
doi: 10.22098/mmws.2023.12728.1270
References
Alempour Rajabi, F., Ghorbani, M. A., & Asadi, E. (2024). Modeling of the evaporation process using the hybrid algorithm of the COOT bird and artificial neural network. Water and Soil Management and Modelling, 4(2), 279-294. [In Persian] doi:10.22098/mmws.2023.12692.1266
An, N. N., Thanh, N. Q., & Liu, Y. (2019). Deep CNNs with self-attention for speaker identification. IEEE access, 7, 85327-85337.
Ashofteh, P. S., Haddad, O. B., & A. Mariño, M. (2013). Climate change impact on reservoir performance indexes in agricultural water supply. Journal of Irrigation and Drainage Engineering, 139(2), 85-97.doi:10.1061/(asce)ir.1943-4774.0000496
Ashofteh, P. S., Haddad, O. B., & Marino, M. A. (2015). Risk analysis of water demand for agricultural crops under climate change. Journal of Hydrologic Engineering, 20(4), 04014060. doi: 10.1061/(asce)he.1943-5584.0001053
Bonatti, C., Berisha, B., & Mohr, D. (2022). From CP-FFT to CP-RNN: Recurrent neural network surrogate model of crystal plasticity. International Journal of Plasticity, 158, 103430. doi:10.1016/j.ijplas.2022.103430
Chen, X., & Liu, Z. (2022). A long short-term memory neural network based Wiener process model for remaining useful life prediction.
Reliability Engineering & System Safety,
226, 108651.
doi.org/10.1016/j.ress.2022.108651
Ehteram, M., Ahmed, A. N., Khozani, Z. S., & El-Shafie, A. (2023). Graph convolutional network–Long short term memory neural network-multi layer perceptron-Gaussian progress regression model: A new deep learning model for predicting ozone concertation. Atmospheric Pollution Research, 14(6), 101766. doi:10.1016/j.apr.2023.101766
Emami, M., Ahmadi, A., Daccache, A., Nazif, S., Mousavi, S. F., & Karami, H. (2022). County-level irrigation water demand estimation using machine learning: Case study of California. Water, 14(12), 1937. doi:10.3390/w14121937
Fahim, A., Tan, Q., Mazzi, M., Sahabuddin, M., Naz, B., & Ullah Bazai, S. (2021). Hybrid LSTM self‐attention mechanism model for forecasting the reform of scientific research in Morocco. Computational Intelligence and Neuroscience, 2021(1), 6689204. doi:10.1155/2021/6689204
Fu, E., Zhang, Y., Yang, F., & Wang, S. (2022). Temporal self-attention-based Conv-LSTM network for multivariate time series prediction. Neurocomputing, 501, 162-173. doi:10.1016/j.neucom.2022.06.014
Giorgi, F.M., Ceraolo, C. and Mercatelli, D., (2022). The R language: an engine for bioinformatics and data science. Life, 12(5), p.648. doi.org/:10.3390/life12050648
Hao, G., Guo, J., Zhang, W., Chen, Y., & Yuen, D. A. (2022). High-precision chaotic radial basis function neural network model: Data forecasting for the Earth electromagnetic signal before a strong earthquake. Geoscience Frontiers, 13(1), 101315. doi:10.1016/j.gsf.2021.101315
He, Z., Liu, P., Zhao, X., He, X., Liu, J., & Mu, Y. (2022). Responses of surface O3 and PM2. 5 trends to changes of anthropogenic emissions in summer over Beijing during 2014–2019: A study based on multiple linear regression and WRF-Chem. Science of The Total Environment, 807, 150792. doi:10.1016/j.scitotenv.2021.150792
Jin, Y., Xie, J., Guo, W., Luo, C., Wu, D., & Wang, R. (2019). LSTM-CRF neural network with gated self attention for Chinese NER. IEEE Access, 7, 136694-136703. doi:10.1109/ACCESS.2019.2942433
Jing, R. (2019, April). A self-attention based LSTM network for text classification. In Journal of Physics: Conference Series (Vol. 1207, p. 012008). IOP Publishing. doi:10.1088/1742-6596/1207/1/012008
Li, W., Qi, F., Tang, M., & Yu, Z. (2020). Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification. Neurocomputing, 387, 63-77. doi:10.1016/j.neucom.2020.01.006
Majumdar, P., Bhattacharya, D., Mitra, S., Solgi, R., Oliva, D., & Bhusan, B. (2023). Demand prediction of rice growth stage-wise irrigation water requirement and fertilizer using Bayesian genetic algorithm and random forest for yield enhancement. Paddy and Water Environment, 21(2), 275-293. doi:10.1007/s10333-023-00930-0
Mohammadi, M., Jahantigh, H., & Zolfahari, F. (2024). Monthly prediction of pan evaporation using individual and combined approaches of data mining models in arid regions. Water and Soil Management and Modeling, 4(2), 227-240. doi: 10.22098/mmws.2023.12728.1270 [In Persian]
Mokhtar, A., Al-Ansari, N., El-Ssawy, W., Graf, R., Aghelpour, P., He, H., Hafez, S.M., & Abuarab, M. (2023). Prediction of irrigation water requirements for green beans-based machine learning algorithm models in arid region. Water Resources Management, 37(4), 1557-1580. doi:10.1007/s11269-023-03443-x
Oukawa, G. Y., Krecl, P., & Targino, A. C. (2022). Fine-scale modeling of the urban heat island: A comparison of multiple linear regression and random forest approaches. Science of the total environment, 815, 152836. doi:10.1016/j.scitotenv.2021.152836
Peng, Y., Xiao, Y., Fu, Z., Dong, Y., Zheng, Y., Yan, H., & Li, X. (2019). Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme optimization. Journal of Cleaner Production, 230, 365-377. doi:10.1016/j.jclepro.2019.04.347
Perea, R. G., García, I. F., Poyato, E. C., & Díaz, J. R. (2023). New memory-based hybrid model for middle-term water demand forecasting in irrigated areas. Agricultural Water Management, 284, 108367. doi:10.1016/j.agwat.2023.108367
Perea, R. G., Poyato, E. C., Montesinos, P., & Díaz, J. R. (2019). Prediction of irrigation event occurrence at farm level using optimal decision trees. Computers and Electronics in agriculture, 157, 173-180.doi:10.1016/j.compag.2018.12.043
Sattari, M. T., Shirini, K., & Javidan, S. (2024). Evaluating the efficiency of dimensionality reduction methods in improving the accuracy of water quality index modeling in Qizil-Uzen River using machine learning algorithms. Water and Soil Management and Modelling, 4(2), 89-104. doi:10.22098/mmws.2023.12434.1241 [In Persian]
Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.
Physica D: Nonlinear Phenomena,
404, 132306.
doi:10.1016/j.physd.2019.132306
Siłka, J., Wieczorek, M., & Woźniak, M. (2022). Recurrent neural network model for high-speed train vibration prediction from time series. Neural Computing and Applications, 34(16), 13305-13318. doi:10.1007/s00521-022-06949-4
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research:Atmospheres, 106(D7), 7183-7192. doi:10.1029/2000JD900719
Vu, H. L., Ng, K. T. W., Richter, A., & An, C. (2022). Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation. Journal of Environmental Management, 311, 114869. doi:10.1016/j.jenvman.2022.114869
Yadav, S. P., Zaidi, S., Mishra, A., & Yadav, V. (2022). Survey on machine learning in speech emotion recognition and vision systems using a recurrent neural network (RNN). Archives of Computational Methods in Engineering, 29(3), 1753-1770. doi:10.1007/s11831-021-09647-x
Yan, X., Gan, X., Wang, R., & Qin, T. (2022). Self-attention eidetic 3D-LSTM: Video prediction models for traffic flow forecasting. Neurocomputing, 509, 167-176. doi:10.1016/j.neucom.2022.08.060
Yatsenko, D., Reimer, J., Ecker, A.S., Walker, E.Y., Sinz, F., Berens, P., Hoenselaar, A., James Cotton, R., Siapas, A.S., &and Tolias, A.S., (2015). Data Joint: managing big scientific data using MATLAB or Python. BioRxiv, p.031658. doi: 10.1101/031658
Yi, S., Liu, H., Chen, T., Zhang, J., & Fan, Y. (2023). A deep LSTM‐CNN based on self‐attention mechanism with input data reduction for short‐term load forecasting. IET Generation, Transmission & Distribution, 17(7), 1538-1552. doi:10.1049/gtd2.12763
Zang, H., Xu, R., Cheng, L., Ding, T., Liu, L., Wei, Z., & Sun, G. (2021). Residential load forecasting based on LSTM fusing self-attention mechanism with pooling. Energy, 229, 120682. doi:10.1016/j.energy.2021.120682
Zhang, Q., Abdullah, A. R., Chong, C. W., & Ali, M. H. (2022). A Study on Regional GDP Forecasting Analysis Based on Radial Basis Function Neural Network with Genetic Algorithm (RBFNN‐GA) for Shandong Economy. Computational Intelligence and Neuroscience, 2022(1), 8235308. doi:10.1155/2022/8235308
Zou, L., Zha, Y., Diao, Y., Tang, C., Gu, W., & Shao, D. (2023). Coupling the causal inference and informer networks for short-term forecasting in irrigation water usage. Water Resources Management, 37(1), 427-449. doi:10.1007/s11269-022-03381-0