Ahangari, M. (2017). Origin of tourmaline and garnet in west Qushchi mylonite granite (NW Iran); constrains on petrogenesis of parental rock.
Iranian Journal of Crystallography and Mineralogy, 25(4), 697-710.
http://ijcm.ir/article-1-989-fa.html. [In Persian]
Alacali, M. (2018). Hydrogeochemical investigation ofgeothermal springs in Erzurum, East Anatolia (Turkey).
Environmental Earth Sciences, 77, 802. doi:
10.1007/s12665-018-7986-1
Asadpour, M., Abbas Novinpour, E., & Nikrouz, R. (2016). The geological study of the origin of boron contamination in the Issiso springs, North of Urmia. Scientific Quarterly Journal of Geosciences, 100, 61-66. doi:10.22071/gsj.2016.40688. [In Persian]
Asghari Moghaddam, A., & Barzegar, R. (2015). Considering factors affecting high arsenic concentration in groundwater resources of Tabriz Plain aquifers. Scientific Quarterly Journal of Geosciences, 24(94), 177-190 doi:10.22071/gsj.2015.43280. [In Persian]
Assadpour, M., Heuss, S., & Jafari Bari, M. (2017). Boron contamination in the west of Lake Urmia, NW Iran, caused by hydrothermal activities.
Procedia Earth and Planetary Science, 17, 554-557.
doi:10.22071/gsj.2016.40688
Bundschuh, J., Maity, J.P., Nath, B., Baba, A., Gunduz, O., Kulp, T.R., Jean, J., Kar, S., Yang, H.J., Tseng, Y., Bhattacharya, P., & Chen, C.Y., (2013). Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources. Hazardous Materials, 262, 951–959. doi:10.22098/mmws.2022.11367.1123
Dehrami, R., Amiri, F. (2023). Impact assessment of land-use changes on groundwater quality in Dahram watershed of Fars province. Water and Soil Management and Modelling, 3(1), pp. 165-80. doi:10.22098/mmws.2022.11367.1123. [In Persian]
Deutsch, W.J., & Siegel, R. (1997). Groundwater geochemistry: Fundamentals and applications to contamination. CRC Press. doi:10.1201/9781003069942
Durrast, H., & Ngansom, W. (2022). Integrated geophysical and geochemical investigations on the high-salinity geothermal waters of the khlong thom hot spring tourist attraction in Krabi, southern Thailand. Geosciences Journal , 26, 621-635. doi:10.1007/s12303-022-0007-0
Dutta, A., & Gupta, R.K. (2022). Geochemistry and utilization of water from thermal springs of tawang and west kameng districts, arunachal pradesh. Journal of the Geological Society of India, 98, 237–244. doi:10.1007/s12594-022-1964-7
Ebrahimi, D., No, J., & Dashti, A. (2019). Inspecting geothermal prospects in an integrated approach within the West Azarbaijan Province of Iran,
Geothermics, 77, 224-235. doi:
10.1016/j.geothermics.2018.09.007
Ellis, A.J., & Mahon, W.A.J. (1977). Chemistry and Geothermal Systems.Chemical Geology, 25(3), 219-226. doi:10.1016/0009-2541(79) 90143 -8.
Faryabi, M. (2023). Delineating the source and mechanism of groundwater salinization in a semi-arid region of southeastern Iran using geophysical and hydrochemical approaches.
Water and Soil Management and Modelling, 3(2), 93-111. doi:10.22098/mmws.2022.11298.1119 [In Persian]
Fournier, R.O. (1979). A revised equation for the na/k geothermometer, geothermal resources council. Water Resource and Protection, 3, 221-224. 1000361
|
|
Fournier, R.O., & Truesdell, A.H. (1973). An empirical Na-K-Ca geothermometer for natural waters.
Geochimica et Cosmochimica Acta, 37, 1255–1275.
doi:10.1016/0016-7037(73)90060-4
Furkan Sener, M. (2019). A new approach to Kırşehir (Turkey) geothermal waters using REY, major elements and isotope geochemistry.
Environmental Earth Sciences, 78, 75. doi:
10.1007/s12665-019-8068-8
German, C.R., & Von Damm, K.L. (2003). Hydrothermal processes. Treatise on Geochemistry, 6, 181–221. doi:10.1016/B0-08-043751-6/06109-0.
Giggenbach, W.F., Gonfiantini, R., Jangi, BL., & Truesdell, AH. (1983). Isotopic and chemical composition of Parbati valley geothermal discharges, NW-Himalaya, India. Geothermics, 12, 199–222.
Hailu, H., & Haftu, S. (2023). Hydrogeochemical studies of groundwater in semi-arid areas of northern Ethiopia using geospatial methods and multivariate statistical analysis techniques. Applied Water Science, 13, 86. doi:10.1007/s13201-023-01890-w
Khodabandeh, A. (2003). Geological map 1:100000 of Selmas, Organization of Geology and Mineral Exploration of the country. [In Persian]
Mahon, W.A.J. (1970). Chemistry in the exploration and exploitation of hydrothermal systems.
Geothermics,
2(2), 1310–1322. doi:
10.1016/0375-6505(70)90449-9
Modabberi, S., & Jahromi Yekta, S. (2013). Environmental geochemistry and sources of potentially toxic elements in thermal springs in the Sabalan volcanic field, NW Iran.
Environmental Earth Scince, 71, 2821-2835. doi:
10.1007/s12665-013-2660-0
Nabavi, M.H. (1978). An introduction to the geology of Iran, Geologic Survey of Iran, Tehran, 109p. [In Persian]
Pashai Karagoz, T., Derakhshi, M., & Aghazadeh, N. (2017). Investigating the effect of lithology on the concentration of boron element (B) in the water resources of Khoy-Mahabad zone and the western part of Alborz-Azerbaijan zone. Master's Thesis, Islamic Azad University, Urmia , Iran. [In Persian]
Pirajno, F. (2009). Hydrothermal processes and mineral systems. Springer Science & Business Media.
Rezaei, A., Javadi, H., Rezaeian, M., Barani, S. (2018). Heating mechanism of the Abgarm-Avaj geothermal system observed with hydrochemistry, geothermometry, and stable isotopes of thermal spring waters, Iran.
Environmental Earth Sciences, 77, 635. doi:
10.1007/s12665-018-7828-1
Rezaei, A., Rezaeian, M., & Porkhial, S. (2019). The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran.
Geothermics,
78, 9–27.
doi:10.1016/j.geothermics.2018.11.006
Smedley, P., & Kinniburgh, D. (2002). A review of the source, behaviour and distribution of arsenic in natural waters.
Applied Geochemistry, 17, 517–568. doi:
10.1016/S0883-2927(02) 00018-5
Subbarao, N. (2011). Geochemistry of groundwater in parts of guntur district, andhra pradesh, India.
Environmental Geology, 41, 552-562. doi:
10.1007/s002540100431
Tang, J., Zhou, X., Zhang, Y., Tian, J., He, M., Li, J., Dong, J., Yucong, Y., Liu, F., Ouyang, S., & Liu, K. (2023). Hydrogeochemistry of fault-related hot springs in the Qaidam Basin, China. Applied Sciences, 13(3), 1415.
doi:10.3390/ app13031415
Utagi, U.N., & Purandara, B.K. (2023). Tempo-spatial quality assessment of spring water using WQI and GIS modeling in Western Ghats region of India.
Innovative Infrastructure Solutions, 8(11), 1-16. DOI:
10.1007/s41062-023-01275-7
Vengosh, A., Helvaci, C., & Karamanderesi, I.H. (2002). Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry, 17,163–183.
Wang, Y., Gu, H., Li, D., Lyu, M., Lu, L. Zuo, Y. & Song, R. (2021). Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in County, southern Tibet. Environmental Earth Sciences. 80(11). doi:
10.1007/s12665-021-09577-8
White, D.E. (1970). Geochemistry applied to the discovery, evaluation, and exploration of geothermal energy resources. Geothermics, 2(1), 58–80. 1004712.
WHO (2011) Guidelines for drinking-water quality, World Health Organization, 4th edition.
Yazdi, M., Farajpour, G., Hasanvand, M., & Navi, P. (2018). Hydrogeochemistry of Isti Su hot spring, Western Azerbaijan, Iran.
Carbonates and Evaporites, 33, 861-867. doi:
10.1007/ s13146-018-0458-6
Yazdi, M., Taheri, M., & Navi, P. (2015). Environmental geochemistry and sources of natural Arsenic in the Kharaqan hot springs, Qazvin, Iran.
Environmental Earth Science, 73, 5395–5404. doi:
10.1007/s12665-014-3794-4
Yoshizuka, K., Nishihama, S., & Sato, H., (2010). Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite.
Environmental Geochemistry Health, 32, 297-302. doi:
10.1007/s10653-010-9300-3
Yousefi Mobarhan, E., Karimi Sanghchini, E., & Lotfinasabasl, S. (2024). Temporal and spatial investigation of groundwater quality with emphasis on industrial uses in Sefid-Rud Basin. Water and Soil Management and Modelling, 4(1),119-134. doi:10.22098/ mmws. 2023.12220.1211. [In Persian]
Zhang, G., Liu, C., Liu, H., Jin, Z., Han, G., Li, L (2008). Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China.
Geothermics, 37, 73-83. doi:
10.1016/j.geothermics.2007.09.002