ارزیابی حساسیت رخداد زمین‌لغزش با استفاده از الگوریتم ماشین بردار پشتیبان

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان زنجان، سازمان تحقیقات، آموزش و ترویج کشاورزی، زنجان، ایران

2 استادیار، بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، خراسان رضوی، ایران

چکیده

زمین‌لغزش یکی از بلایای طبیعی پیش‌روی انسان است که باتوجه ‌به این‌که نسبت به سایر بلایای طبیعی مدیریت‌پذیرتر هستند، شناخت این بلایا در راستای جلوگیری از خسارات ناشی از آن از اهمیت زیادی برخوردار است. از این‌رو، تحقیق حاضر به‌منظور تعیین مهم‌ترین عوامل مؤثر در وقوع زمین‌لغزش، ارزیابی حساسیت و خطر زمین‌لغزش در حوزة آبخیز چسب در استان زنجان انجام گرفت. برای انجام این مطالعه ابتدا از طریق مطالعات کتابخانه‌ای و بازدید صحرایی اقدام به شناخت و جمع‌آوری عوامل مؤثر بر وقوع زمین‌لغزش شد. سپس لایه‌های اطلاعاتی شامل شیب، جهت شیب، طبقات ارتفاعی، زمین‌شناسی، فاصله از رودخانه، فاصله از جاده، فاصله از گسل، شاخص توان رودخانه (SPI)، شاخص رطوبت توپوگرافی (TWI)، شاخص طول شیب (LS)، شاخص موقعیت توپوگرافی (TPI)، شاخص ناهمواری توپوگرافی، شاخص انحنای دامنه، کاربری اراضی، شاخص نرمال ‌شدة تفاوت پوشش گیاهی (NDVI) و بارش در محیط سامانة اطلاعات جغرافیایی تهیه شد. طی بررسی‌های میدانی و ارزیابی مطالعات قبلی پیرامون زمین‌لغزش، در مجموع 81 مورد زمین‌لغزش در منطقة مورد مطالعه شناسایی شد. جهت مدل‌سازی خطر زمین‌لغزش از 70 درصد نقاط لغزشی برای آموزش مدل و 30 درصد به‌منظور اعتبارسنجی مدل استفاده شد. در ادامه، به کمک مدل ماشین بردار پشتیبان (SVM) نقشة حساسیت وقوع زمین‌لغزش تهیه شد. نتایج نشان داد 63/30 درصد مساحت حوزة آبخیز در کلاس حساسیت خیلی کم، 82/17 درصد در کلاس حساسیت کم، 43/15 درصد در کلاس حساسیت متوسط، 33/17 درصد در کلاس حساسیت زیاد و 5/18 درصد از سطح منطقه در کلاس حساسیت خیلی زیاد قرار گرفته است. کارایی مدل ماشین بردار پشتیبان نیز با استفاده از منحنی ROC مورد ارزیابی قرار گرفت که میزان مساحت سطح زیر منحنی (AUC) در مرحلة اعتبارسنجی 874/0 به‌دست آمد. این مقدار سطح زیر منحنی حاکی از قابلیت خیلی خوب مدل در پهنه‌بندی و تعیین مناطق مستعد خطر زمین‌لغزش در حوزة آبخیز چسب است. نتایج این مطالعه به پیشرفت دانش در مورد زمین‌لغزش کمک می‌کند و دیدگاه‌های ارزشمندی را برای تلاش‌ها در جهت کاهش خطر بالایا در حوزة آبخیز چسب ارائه می‌دهد. نقشة حساسیت به‌دست ‌آمده می‌تواند مدیران، تصمیم‌گیران و مسئولان را در اجرای اقدامات مناسب و اطمینان از ایمنی جمعیت و زیرساخت‌های منطقه راهنمایی کند.

کلیدواژه‌ها

موضوعات


Afifi, M.I. (2021). Spatial analysis of landslide risk with emphasis on geomorphological factors using stochastic forest model (Case study: Larestan city in Fars province). Quarterly Journal of Physical Geography14 (51), 39-53. dor: 20.1001.1.20085656.1400.14.51.3.0. [In Persian]
Aleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58, 21-44. https://link.springer.com/article/10.1007/s100640050066
Arabameri, A., Pourghasemi, H.R., & Yamani, M. (2017). Applying different scenarios for landslide spatial modeling using computational intelligence methods. Environmental Earth Sciences, 76, 1-20. doi:10.1007/s12665-017-7177-5
Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., & Tien Bui, D. (2020). Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sensing, 12(3), 475. doi:10.3390/rs12030475
Assilzadeh, H., Levy, J.K., & Wang, X. (2010). Landslide catastrophes and disaster risk reduction: A GIS framework for landslide prevention and management. Remote Sensing, 2(9), 2259-2273. doi:10.3390/rs2092259
Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31. doi:10.1016/j.geomorph.2004.06.010
Azimpour Moghaddam, V. (2015). Risk zoning of landslides using Bayesian theory and Dempster-Shafer theory: A case study of a section of the Babolroud watershed. M.Sc. Thesis, Sari University. 123 p. [In Persian]
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M., Pastor, M., Ferisi, S., Tofani, V., Hervas, J., & Smith, J.T. (2013). Recommendations for the quantitative assessment of landslide risk. Bulletin of Engineering Geology and the Environment, 73, 209-263. doi:10.1007/s10064-013-0538-8
Dastranj, A., & Karimi, E. (2022). Landslide susceptibility predicting using the maximum entropy machine learning algorithm (Bar catchment of Nishapur). Researches in Earth Sciences, 13(3), 76-96. doi:10.48308/esrj.2022.102965. [In Persian]
Emadodin, S., Taheri, V., Mohammad Ghasemi, M., & Nazari, Z. (2021). Landslide susceptibility zonation applying frequency ratio models and statistical index in in Oghan watershed. Quantitative Geomorphological Research, 9(4), 75-95. doi:10.22034/gmpj.2021.248268.1211 [In Persian]
Esfandiary Darabad, F., Rahimi, M., Navidfar, A., & Arsalan, M. (2020). Assessment of landslide sensitivity by neural network method and vector machine algorithm (Case study: Heyran Road -Ardebil province). Quantitative Geomorphological Research9(3), 18-33. doi:10.22034/gmpj.2020.122210. [In Persian]
Froude, M.J., & Petley, D.N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161-2181. doi:10.5194/nhess-18-2161-2018
Furlani, S., & Ninfo, A. (2015). Is the present the key to the future? Earth-Science Reviews, 142, 38-46. doi:10.1016/j.earscirev.2014.12.005
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299. doi:10.1016/j.geomorph.2005.06.002
Hallaji, M., Zanganeh Asadi, M.A., & Amirahmadi, A. (2020). An Assessment of the landslide susceptibility prediction models in the Bar Watershed-Neyshabur. Watershed Management Researches, 33(2), 20-30. doi:10.22092/wmej.2019.126950.1241. [In Persian]
Hong, H., Pradhan, B., Xu, C., & Bui, D.T. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena133, 266-281. doi:10.1016/j.catena.2015.05.019
Lee, S., Hong, S.M., & Jung, H.S. (2017). A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability, 9(1), 48.  doi:10.3390/su9010048
Li, L., Lan, H., Guo, C., Zhang, Y., Li, Q., & Wu, Y. (2017). A modified frequency ratio method for landslide susceptibility assessment. Landslides, 14, 727-741. doi:10.1007/s10346-016-0771-x
Mohammadi, N., & Sasanpour, F. (2021). Risk analysis of landslide and debris flow occurrence on the Haraz and Lavasanat roads. Water and Soil Modeling and Management, 1(4),14-29. doi:10.22098/mmws.2021.9138. 1023 [In Persian]
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche hotspots. Landslides, 3, 159-173. doi:10.1007/s10346-006-0036-1
Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287-301.‌ doi:10.1016/j.geomorph.2013.08.013
Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927-930. doi:10.1130/G33217.1
Pham, B.T., Prakash, I., Khosravi, K., Chapi, K., Trinh, P.T., Ngo, T.Q., Hosseini, S.V. and Bui, D.T. Pham, B.T., Prakash, I., Khosravi, K., Chapi, K., Trinh, P.T., Ngo, T. Q., . Hosseini, S.V., & Bui, D. T. (2019). A comparison of support vector machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International, 34(13), 1385-1407. doi:10.1080/10106049.2018.1489422
Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M., & Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91. doi:10.1016/j.earscirev.2018.03.001
Rostamizad, G. (2023). Assessing the potential and risk of landslides in Zanjan province (study area: Chesb watershed). A research project supported by the support of researchers and technologists of the country. 123 p. [In Persian]
Rostamizad, G., Khanbabaei, Z., & Tahamoures, M. (2022). Assessing the validity of the classification algorithms reviewed for the role of land use (Study: Taham Watershed). Environmental Erosion Research Journal, 12(4), 141-157.  http://magazine.hormozgan.ac.ir/article-1-710-fa.html. [In Persian]
Sepahvand, A.R., & Beiranvand, N. (2024). Mapping the susceptibility of landslide occurrence using machine learning algorithms (Study area: part of the Haraz watershed). Water and Soil Modeling and Management, 4(2), 261-278. doi:10.22098/mmws.2023. 12678.1263. [In Persian]
Shano, L., Raghuvanshi, T.K., & Meten, M. (2021). Landslide hazard zonation using logistic regression model: the Case of Shafe and Baso Catchments, Gamo Highland, Southern Ethiopia. Geotechnical and Geological Engineering, 1-19. doi:10.1007/s10706-021-01873-1
Suyarto, R., Diara, I.W., Susila, K.D., Saifulloh, M., Wiyanti, W., Kusmiyarti, T.B., & Sunarta, I.N. (2023). Landslide inventory mapping derived from multispectral imagery by support vector machine (SVM) algorithm. In IOP Conference Series: Earth and Environmental Science, 1190, (1), 012012. doi:10.1088/1755-1315/1190/1/012012
Tyagi, A., Tiwari, R.K., & James, N. (2021). GIS-based landslide hazard zonation and risk studies using MCDM. In Local Site Effects and Ground Failures: Select Proceedings of 7th ICRAGEE 2020 (pp. 251-266). Springer Singapore.‏ doi:10.1007/978-981-15-9984-2_22
Wang, Z., & Brenning, A. (2021). Active-learning approaches for landslide mapping using support vector machines. Remote Sensing, 13(13), 2588. doi:10.3390/rs13132588
Wu, W., Zucca, C., Muhaimeed, A.S., Al-Shafie, W.M., Al-Quraishi, A.M.F., Nangia, V., Zhu MinQiang, Z.M., & Liu GuangPing, L.G.,Wu, W., Zucca, C., Muhaimeed, A.S., Al‐Shafie, W.M., Fadhil Al‐Quraishi, A.M., Nangia, V., Zhu, M., Liu, G. (2018). Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degradation & Development, 29(11), 4005-4014. doi:10.1002/ldr.3148
Yarahmadi, J., Amini, A., & Rostamizad, G. (2023). Accuracy assessment of pistachio climate suitability map based on ROC curve. Environment and Water Engineering, 9(1), 127-140. doi:10.22034/jewe.2021.262531.1486. [In Persian]
Zali, M., & Shahedi, K. (2021). Assessment of landslide sensitivity using fuzzy logic approach and geographic information systems in the Nekarud watershed. Water and Soil Modeling and Management, 1(1), 67-80. doi:10.22098/mmws.2021.1183 [In Persian]
Zhou, X., Wu, W., Lin, Z., Zhang, G., Chen, R., Song, Y., Wang, Z., Lang, T., Qin, Y., Ou, P., Huangfu, W., Zhang, Y., Xie, L., Huang, X., Fu, X., Li, J., Jiang, J., Zhang, M., Liu, Y., Peng, Sh., Shao, C., Bai, Y., Zhang, X., Liu, X., & Liu, W. (2020). Landslide risk zoning in Ruijin, Jiangxi, China. Natural Hazards and Earth System Sciences Discussions, 1-21. doi:10.5194/nhess-2020-270
Zhu, A.X., Miao, Y., Liu, J., Bai, S., Zeng, C., Ma, T., & Hong, H. (2019). A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods. Catena, 183, 104188. doi:10.1016/j.catena.2019.104188