Azartaj, E., Rasoulzadeh, A., & Asghari, A. (2018). Investigation of land use change effect on runoff and soil erosion using rainfall simulation in Heiran area, Ardabil,
Watershed Engineering and Management,
10(1), 1-13.
doi:10.22092/ijwmse.2018.115656. [In Persian]
Casermeiro, M.A., Molina, J.A., Delacruz Caravaca, M.T., Hernando Massanet, M.I., & Moreno, P.S. (2004). Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate,
Catena, 7, 97-107.
doi:10.1016/s0341 8162(03)00160-7
Duan, J., Liu, Y.J., Wang, L.Y., Yang, J., Tang, C.J., & Zheng, H.J. (2022). Importance of grass stolons in mitigating runoff and sediment yield under simulated rainstorms.
Catena,
213, 106132.
doi:10.1016/j.catena.2022.106132
Dunjo, G., Pardini, G., & Gispert, M. (2004). The role of land use–land cover on runoff generation and sediment yield at a microplot scale
. Journal of Arid Environment, 57, 99–116.
doi:10.1016/S0140-1963(03)00097-1
Dunkerley, D. (2021). The importance of incorporating rain intensity profiles in rainfall simulation studies of infiltration, runoff production, soil erosion, and related land surface processes.
Journal of Hydrology,
603, 126834.
doi:10.1016/j.jhydrol.2021.126834
Gao, Y., Zhu, B., Zhou, P., Tang, J.L., Wang, T., & Miao, C.Y. (2009). Effects of vegetation cover on phosphorus loss from a hillslope cropland of purple soil under simulated rainfall: a case study in China.
Nutrient Cycling in Agroecosystems,
85, 263-273.
doi:10.1007/s10705-009-9265-8
Hatefi, M., Sadeghi, H.R., Erfanzadeh, R. & Behzadfar, M. (2020). Laboratory investigation of the role of vegetation in the production of runoff in small plots under the freeze-thaw cycle.
Journal of Water and Soil, 34(4), 764-755. doi:
10.22067/JSW.V34I4.76389. [In Persian]
Hou, G., Bi, H., Huo, Y., Wei, X., Zhu, Y., Wang, X., & Liao, W. (2020). Determining the optimal vegetation coverage for controlling soil erosion in
Cynodon dactylon grassland in North China.
Journal of Cleaner Production,
244, 118771.
doi:10.1016/j.jclepro.2019.118771
Kamphorst, A. (1987). A small rainfall simulator for the determination of soil erodibility.
Agriculture Science,
35, 407-415.
doi:10.18174/njas.v35i3.16735
Kavianpour, A.M., Jafarian, Z., Ismaili, A., & Kavian, A. (2015). The effect of vegetation cover on reducing runoff and soil loss using a rain simulator in uncultivated pastures of Mazandaran province.
Geography and Environmental Planning,
26(58(2)), 179-190. doi:
20.1001.1.20085362.1394.26.2.12.3. [
In Persian]
Kervroëdan, L., Armand, R., Saunier, M., & Faucon, M. P. (2019). Effects of plant traits and their divergence on runoff and sediment retention in herbaceous vegetation. Plant and Soil, 441, 511-524. doi:10.1007/s11104-019-04142-6
Kim, J.K., Onda, Y., Kim, M.S., & Yang, D.Y. (2014). Plot-scale study of surface runoff on well-covered forest floors under different canopy species.
Quaternary International,
344, 75-85.
doi:10.1016/j.quaint.2014.07.036
Kuras, P.K., Alila, Y., & Weiler, M. (2012). Forest harvesting effects on the magnitude and frequency of peak flows can increase with return period.
Water Resources Research,
48(1).
doi:10.1029/2011WR010705
Marques, M.J., Bienes, R., Jiménez, L., & Pérez-Rodríguez, R. (2007). Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.
Science of the Total Environment,
378(1-2), 161-165.
doi:10.1016/j.scitotenv.2007.01.043
Mingguo, Z., Qiangguo, C., & Hao, C. (2007). Effect of vegetation on runoff-sediment yield relationship at different spatial scales in hilly areas of the Loess Plateau, North China.
Acta Ecologica Sinica,
27(9), 3572-3581.
doi:10.1016/S1872-2032(07) 60075-4
Morgan, R.P. (2007). Vegetative-based technologies for erosion control. In Eco-and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability: Proceedings of the First International Conference on Eco-Engineering 13–17 September 2004 (pp. 265-272). doi:10.1007/978-1-4020-5593-5_26
Negi, G.C.S., Joshi, V., & Kumar, K. (1998). Spring sanctuary development to meet household water demand in the mountaiCns: a call for action. Research for Mountain Development: Some Initiatives and Accomplishments. Gyanodya Prakashan, Nainital, India, 25-48.
Nie, J., Dai, P., & Sobel, A.H. (2020). Dry and moist dynamics shape regional patterns of extreme precipitation sensitivity.
Proceedings of the National Academy of Sciences,
117(16), 8757-8763.
doi:10.1073/pnas.1913584117
Noor, H., Arabkhedri, M., & Dastranj, A. (2023). Evaluation of the effect of range exclosure on soil erosion at plots scale (Case study: Sanganeh Soil Conservation Research Site). Water and Soil Management and Modelling, 3(2), 66-77. doi:10.22098/mmws.2022.11286.1116. [In Persian]
Pan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions.
Journal of Hydrology,
331(1-2), 178-185.
doi:10.1016/j.jhydrol.2006.05.011
Pan, C., Ma, L., & Shangguan, Z. (2010). Effectiveness of grass strips in trapping suspended sediments from runoff.
Earth Surface Processes and Landforms,
35(9), doi:1006-1013.
doi:10.1002/esp.1997
Perez-Latorre, F.J., de Castro, L., & Delgado, A. (2010). A comparison of two variable intensity rainfall simulators for runoff studies.
Soil and Tillage Research,
107(1), 11-16.
doi:10.1016/j.still.2009.12.009
Rahmani Nenekaran, F., Esmaeli Ouri, A., Hazbavi, Z., Kalehhouei, M., Ahmadi, M., & Mostafazadeh, R. (2021). Simulation of the effect of vegetation type on hydrological response at the scale of a field plot. The 10th International Conference on Rain Catchment Surface Systems, Kordestan, Iran, Pp. 1-7. [In Persian]
Rahmani Nenehkaran, F., Esmaeli Ouri, A., Kalehhouei, M., Ahmadi, M., Mostafazadeh, R., & Hazbavi, Z. (2022). The changeability of runoff and sediment components from different compositions and percentages of vegetation. Environmental Erosion Research Journal, 12(4), 158-173. 20.1001.1.22517812.1401.12.4.8.9. [In Persian]
Saeediyan, H., & Moradi, H.R. (2022). Comparing of the runoff and sediment of different land uses in Gachsaran and Aghajari formations under rain simulation. Water and Soil Management and Modeling, 2(2), 55-68. doi:10.22098/MMWS.2022.9802.1065. [In Persian]
Sheridan, G.J., Noske, P.J., Lane, P.N., & Sherwin, C. B. (2008). Using rainfall simulation and site measurements to predict annual interrill erodibility and phosphorus generation rates from unsealed forest roads: Validation against in-situ erosion measurements.
Catena,
73(1), 49-62.
doi:10.1016/j.catena.2007.08.006
Snelder, D.J., & Bryan, R.B. (1995). The use of rainfall simulation tests to assess the influence of vegetation density on soil loss on degraded rangelands in the Baringo District, Kenya.
Catena,
25(1-4), 105-116.
doi:10.1016/0341-8162(95)00003-B
Wildhaber, Y.S., Bänninger, D., Burri, K., and Alewell, C. (2012). Evaluation and application of a portable rainfall simulator on subalpine grassland, Catena, 91, 56-62. doi: 10.1016/j.catena.2011.03.004
Wu, S., Wu, P., Feng, H., & Merkley, G.P. (2011). Effects of alfalfa coverage on runoff, erosion and hydraulic characteristics of overland flow on loess slope plots.
Frontiers of Environmental Science & Engineering in China,
5, 76-83.
doi:10.1007/s11783-011-0282-x
Yaghmai, L., Sabohi, R., & Hajjaforushnia, Sh. (2008). Drought analysis using GIS (case study of Kashan region), The Second National Conference on the Effects of Drought and Its Management Solutions. [In Persian]
Zhang, G., Liu, G., Zhang, P., & Yi, L. (2014). Influence of vegetation parameters on runoff and sediment characteristics in patterned
Artemisia capillaris plots.
Journal of Arid Land,
6, 352-360.
doi:10.1007/s40333-013-0224-5