Ahmadi Iikhchi, A., Hajabbassi, M.A., & Jalalian. A. (2003). Effects of converting range to dry-farming land on runoff and soil loss and quality in Dorahan, Chaharmahal & Bakhtiari Province.
Journal of Crop Production and Processing,
6(4),103-115. dor:
20.1001.1.23833254.1394.2.2.1.0 [In Persian]
Ahmadi, S., Amjadi, H., Chapi, K., Soodmand Afshar, R., & Ebrahimi, B. (2023). Fuzzy flash flood risk and vulnerability assessment for the City of Sanandaj, Kurdistan Province, Iran. Natural Hazards, 115(1), 237-259. doi:10.1007/s11069-022-05552-z
Ahmadzade, H., Saiid Abadi, R., & Noori, A. (2015). A Study and zoning of the areas prone to flooding with an emphasis on Urban Floods (Case Study: City of Maku). Hydrogeomorphology, 2(2), 1-24. dor:20.1001.1.23833254.1394.2.2.1.0 [In Persian]
Allahveisi, M., Hosseini, B., Ahmadi Tawana, B., & Jahdi, N. (2012). Identification of urban factors affecting the vulnerability of urban floods (case study: Sanandaj City). National Conference on Flood Management, Permanent Secretariat of National Conference on Flood Management, Tehran, Iran. https://civilica.com/doc/207377. [In Persian]
Anni, A.H., Cohen, S., & Praskievicz, S. (2020). Sensitivity of urban flood simulations to storm water infrastructure and soil infiltration.
Journal of Hydrololgy, 588, 125028. doi:
10.1016/j.jhydrol.2020.125028
Asghari Moghadam, M. (1998). Natural geography of the City: hydrology and flooding of the City, 1th Edition, Masai Publishing House Tehran, 200 pages. [In Persian]
Azadtalab, M., Shahabi, H., Shirzadi, A., & Chapi, K. (2020). Flood hazard mapping in Sanandaj using combined models of statistical index and evidential belief function. Motaleate Shahri, 9(36), 27-40. doi: 10.34785/J011.2021.801. [In Persian]
Büchele, B., Kreibich, H., Kron, A., Thieken, A., & Ihringer, J. (2006). Flood-risk mapping, contributions towards an enhanced assessment of extreme events and associated risks.
Natural Hazards and Earth System Sciences,
6, 485-503.
doi:10.5194/nhess-6-485-2006
Bui, D.T., Pradhan, B., Revhaug, I., Nguyen, D.B., Pham, H.V., Bui, Q.N. (2015). A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang Son City area (Vietnam).
Geomatics, Natural Hazards Risk,
6(3), 243e271. doi:
10.1080/19475705.2013.843206
Chapi, K., Singh, V, P., Shirzadi, A., Shahabi, H., Tien Bui, D., Pham, B.T., & Khosravi, K.H. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment.
Environmental Modelling & Software, 95, 229-245. doi:
10.1016/j.envsoft.2017.06.012
Dharmarathne, G., Waduge, A.O., Bogahawaththa, M., Rathnayake, U., & Meddage, D.P.P. (2024). Adapting cities to the surge: A comprehensive review of climate-induced urban flooding.
Results in Engineering, p.102123.
doi:10.1016/j.rineng.2024.102123
Fernández, D.S., & Lutz, M.A. (2010). Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis.
Engineering Geology, 111, 90–98.
doi:10.1016/j.enggeo.2009.12.006
Ghahrodi Tali, M. (2007). Forecasting the substructure of spatial data in river basins in Iran, the third conference on spatial information systems,
https://sid.ir/paper/811136/fa [In Persian]
Gravandi, Y. (2011). Urban flood risk mapping using multi-criteria decision analysis (MCDA) and geographic information system (GIS) (Case study: Kermanshah City). Master's Thesis, Sari University of Natural Resources, Iran. [In Persian]
Kazemi, M., & Jafarpour, A. (2022). Identifying the threshold of variables affecting flood zones using machine learning technique (Case study: Karun Bozor End Basin). Soil And Water Modeling And Management, 4(1), 214-232. doi:10.22098/mmws.2023.12285.1220. [In Persian]
Moghadamnia, A., and Wafakhah, M. (2018). Flood control. Publications of Tarbiat Modares University, 2th Edition:, 411 pages.
Mohammadi, H., Maghsoudi, M., & Roshan, G.H. (2006). The position and role of flood forecasting and warning systems in reducing the destructive effects of floods. Geographical Perspective, 1(3), 87-101. http://noo.rs/JS5dK [In Persian]
Moon, H.T., Kim, J.S., Chen, J., Yoon, S.K., & Moon, Y.I. (2024). Mitigating urban flood Hazards: Hybrid strategy of structural measures.
International Journal of Disaster Risk Reduction,
108, 104542.
doi:10.1016/j.ijdrr.2024.104542
Rahmani, M., Tarari, M., & Molla Aghajanzadeh, S. (2014). Urban flood risk mapping using weighted linear combination (WLC) and ordered weighted average (OWA) scenarios (Case study: Sari City, Mazandaran, Iran), International Conference on Modern Research in Sciences Agriculture and Environment, Karin Conference Excellence Institute.
https://sid.ir/paper/862056/fa [In Persian]
Rasouli, A. (1998). The necessity of creating the geographic information systems in the geographical groups of the country. Geography Education Development, 29, 1-8. [In Persian]
Sadeghi, S.H.R., Jalalirad, R., & Mohammadi Sarabi, A. (2003). Flood mapping using HEC-RAS software and geographic information system (Case study; Darabad urban catchment of Tehran). Caspian Agricultural Sciences and Natural Resources Research Journal, 1(2), 34-47. [In Persian]
Sayyad, D., Ghazavi, R., & Omidvar, E. (2022). Appropriate urban infrastructure management strategies against floods from the perspective of passive defense using SWOT and QSPM (Case study: Kashan City). Water and Soil Management and Modelling, 2(1), 42-52. doi: 10.22098/mmws.2022.9651.1055. [In Persian]
Shabani Langrani, M. (2011). Application of remote sensing techniques and geographic information system in urban flood control (Case study: North of Tabriz City), Master's thesis, University of Tabriz, Tabriz, Iran. [In Persian]
Shirzadi, A., Chapi, K., Shahabi, H., Solaimani, K., Kavian, A., & Ahmad, B.B. (2017). Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 76(4), 152. doi:10.1007/s12665-017-6471-6
Sowmya, K., & John, C.M. (2015). Urban flood vulnerability zoning of Cochin City, Southwest coast of India, using remote sensing and GIS.
Natural Hazards,
75(2). doi:
10.1007/s11069-014-1372-4
Tsangaratos, P., & Benardos A. (2014). Estimating landslide susceptibility through an artificial neural network classifier. Natural Hazards, 74(3), 1489-1516. doi:10.1007/s11069-014-1245-x
Umar, Z., Pradhan, B., Ahmad, A., NeamahJebur, M., & Shafapour Tehrany, M. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena,
118, 124-135. doi:
10.1016/j.catena.2014.02.005
United Nations Development Programme (UNDP), (2004). A global report reducing disaster risks a challenge for development. 267, 2541-2553.
Vafaei, M, Dastorani, M., & Rostami khalaj, M. (2022). Flood risk assessment in Ferdowsi University of Mashhad campus and presentation of related management scenarios using HEC-RAS model. Water and Soil Modeling and Management, 3(3), 225-239. doi: 10.22098/mmws.2022.11815.1173. [In Persian]
Wang, Y., Hong, H., Chen, W., Li, S., Pamučar, D., Gigović, L., Drobnjak, S., Tien Bui, D., & Duan, H. (2018). A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China.
Remote Sensing,
11(1), 62.
doi:10.3390/rs11010062
Ye, M.Q., Wu, J.D., Wang, C.L., & He, X. (2019). Historical and future changes in asset Society. Weather, Climate, and Society, 11(2), 307–319.
Zeraatkar, Z. (2011). Flood mapping of Shahroud and Pelbagh rivers in Birjand using HEC-RAS and ARC-GIS. M.Sc. Thesis, University of Zabul, Iran. [In Persian]