Abbasi, F., Bazgeer, S., Kalehbasti, P.R., Oskoue, E.A., Haghighat, M., & Kalehbasti, P.R. (2022). New climatic zones in Iran: A comparative study of different empirical methods and clustering technique.
Theoretical and Applied Climatology,
147(1), 47-61.
doi:10.1007/s00704-021-03847-y
Allahverdipour, P., & Sattari, M.T. (2023). Comparing the performance of the multiple linear regression classic method and modern data mining methods in annual rainfall modeling (Case study: Ahvaz city).
Water and Soil Management and Modeling,
3(2), 125-142.
doi:10.22098/mmws.2022.11337.1120. [In Persian]
Azizi, H.R., nejatian, N., Athari, M.A., & hashemi, S.S. (2021). The effects of climate change on the drought trend of Varamin plain using De-Martonne index.
Nivar,
45(112-113), 67-76.
doi: 10.30467/nivar.2021.266357.1177
Bagherabadi, R. (2022). Investigation of climate change on the Kermanshah City using the de martoune, ambrothermic and embereger in 1991-2021.
Geography and Human Relationships,
4(4), 173-185.
dor:20.1001.1.26453851.1401.4.4.12.4. [In Persian]
Casanueva, A., Herrera, S., Fernández, J., & Gutiérrez, J.M. (2016). Towards a fair comparison of statistical and dynamical downscaling in the framework of the EURO-CORDEX initiative.
Climatic Change,
137, 411-426.
doi:10.1007/s10584-016-1683-4
Chong-Hai, X.U, & Ying, X. (2012). The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble.
Atmospheric and Oceanic Science Letters,
5(6), 527-533.
doi:10.1080/16742834.2012.11447042
Chylek, P., Li, J., Dubey, M.K., Wang, M., & Lesins, G.J.A.C. (2011). Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2.
Atmospheric Chemistry and Physics Discussions,
11(8), 22893-22907.
doi:10.5194/acpd-11-22893-2011
De Martonne, E. (1941). Traite de Geographie Physique: 3 tomes, Paris. Flocas AA. 1994. Courses of 28 Meteorology and Climatology. Ziti Publications: Thessaloniki.
Fathizad, H., Tavakoli, M., Hakimzadeh Ardakani, M.A., TaghizadehMehrjardi, R., & Sodaiezadeh, H. (2021). Evaluation of the effects of climate change on meteorological parameters under different scenarios in Yazd meteorological station
. Journal of Water and Soil Science,
24(4), 1-19
doi:10.47176/jwss.24.4.42131. [In Persian]
Feddema, J.J. (2005). A revised Thornthwaite-type global climate classification.
Physical Geography,
26(6), 442-466. d
oi:10.2747/0272-3646.26.6.442
Gavrilov, M.B., Radaković, M.G., Sipos, G., Mezősi, G., Gavrilov, G., Lukić, T., Basarin, B., Benyhe, B., Fiala, K., Kozák, P., & Perić, Z.M. (2020). Aridity in the central and southern Pannonian basin.
Atmosphere,
11(12), 1269.
doi:10.3390/atmos11121269
Hajam, S., Khoush Khou, Y., & Shams Aldin Vandi, R. (2008). Annual and seasonal precipitation trend analysis of some selective meteorological stations in central region of Iran Using non-poarametric methods. Geographical Research Quarterly, 40(64), 157-168. https://jphgr.ut.ac.ir/article_26912.html?lang=en [In Persian]
Hedayati Dezfuli, A., & Kakavand, R. (2012). Climatic zoning of Qazvin Province. Nivar, 36(77-76), 59-66. [In Persian]
Jafary Godeneh, M., Salajeghe, A., & Haghighi, P. (2020). Forecast comparative of rainfall and temperature in Kerman County using LARS-WG6 models.
Iranian Journal of Ecohydrology,
7(2), 529-538.
doi:10.22059/ije.2020.298577.1294. [In Persian]
Jahangir, M.H. & Mohammadi, A. (2018). Climatic zoning of East Azerbaijan by LARS-WG down scaling model for 2011-2065.
Geography (Regional Planning),
8(2), 119-130.
dor: 20.1001.1.22286462.1397.8.2.8.7. [In Persian]
Khalili, A., Bazrafshan, J., & Cheraghalizadeh, M. (2022). A Comparative study on climate maps of Iran in extended de Martonne classification and application of the method for world climate zoning.
Journal of Agricultural Meteorology,
10(1), 3-16.
doi:10.22125/agmj.2022.156309. [In Persian]
Khalili, N., Davary, K., Alizadeh, A., Ansari, H., Rezaee Pazhand, H., Kafi, M., & Ghahraman, B. (2016). Evaluation of the Performance of ClimGen and LARS-WG models in generating rainfall and temperature time series in rainfed research station of Sisab, Northern Khorasan.
Journal of Water and Soil,
30(1), 322-333
doi:10.22067/jsw.v30i1.45058. [In Persian]
Mohammadi, H., Khalili, R., & Mohammadi, S. (2021). Forecasting future temperature and precipitation under the effects of climate change using the LARS-WG climate generator (Case Study: South Zagros Region of Iran).
Nivar,
45(114-115), 137-153
doi: 10.30467/nivar.2022.319565.1209. [In Persian]
Mousavi, S. S., Karandish, F., & Tabari, H. (2016). Temporal and spatial variation of rainfall in Iran under climate change until 2100. Irrigation and Water Engineering, 7(1), 152-165. [In Persian]
Navarro, A., Merino, A., Sánchez, J.L., García‐Ortega, E., Martín, R., & Tapiador, F.J. (2022). Towards better characterization of global warming impacts in the environment through climate classifications with improved global models.
International Journal of Climatology,
42(10), 5197-5217.
doi:10.1002/joc.7527
Pellicone, G., Caloiero, T., & Guagliardi, I. (2019). The De Martonne aridity index in Calabria (Southern Italy).
Journal of Maps,
15(2), 788-796.
doi:10.1080/17445647.2019.1673840
Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models.
Ecological modelling,
57(1-2), 27-41.
doi:10.1016/0304-3800(91)90053-4
Radaković, M.G., Tošić, I., Bačević, N., Mladjan, D., Gavrilov, M.B., & Marković, S.B. (2018). The analysis of aridity in Central Serbia from 1949 to 2015.
Theoretical and Applied Climatology,
133, 887-898.
doi:10.1007/s00704-017-2220-8
Rahimi, J., Ebrahimpour, M. & Khalili, A. (2013). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran.
Theoretical and applied climatology,
112, 409–418.
doi: 10.1007/s00704-012-0741-8
Raziei, T. (2017). An Outlook on the Iranian Kö Ppen-Geiger climate zones in the 21st Century. Iranian Journal of Geophysics, 11(1), 84-100. https://www.ijgeophysics.ir/article_46717.html?lang=en [In Persian]
Semenov, M.A., Brooks, R.J., Barrow, E.M., & Richardson, C.W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates.
Climate Research,
10(2), 95-107.
doi:10.3354/cr010095
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. (2014). Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change, 1535 pp.
Su, B., Huang, J., Mondal, S.K., Zhai, J., Wang, Y., Wen, S., Gao, M., Lv, Y., Jiang, S., Jiang, T., & Li, A. (2021). Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China.
Atmospheric Research,
250, 105375.
doi:10.1016/j.atmosres.2020.105375
Tabari, H., Talaee, P.H., Nadoushani, S.M., Willems, P., & Marchetto, A. (2014). A survey of temperature and precipitation based aridity indices in Iran.
Quaternary International,
345, 158-166.
doi:10.1016/j.quaint.2014.03.061
Zarrin, A., Yazdany, D., & Dadashi-Roudbari, A. A. (2022). Projection of minimum and maximum temperatures in cold regions of Iran using SDSM statistical downscaling model.
Climate Change Research,
3(10), 19-32
doi:10.30488/ccr.2022.340823.1078. [In Persian]