ارزیابی ‌روش‌های‌‌ محاسبات ‌نرم‌ در ‌برآورد‌ رسوب معلق ‌رودخانه (ایستگاه حسن‌آباد رودخانة تیره)

نوع مقاله : پژوهشی

نویسندگان

1 استادیار، گروه تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان مرکزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اراک، ایران

2 دکتری، رئیس بخش فنی و مهندسی اداره کل منابع طبیعی استان مرکزی، اراک، ایران

3 استادیار، گروه علوم و مهندسی آب، دانشکدة کشاورزی و محیط زیست، دانشگاه اراک، اراک، ایران

4 استادیار، پژوهشکده حفاظت خاک و آبخیزداری کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

برآورد بار رسوب رودخانه‌ها از مسائل مهم و کاربردی در مطالعات و طراحی پروژه‌های مهندسی آب، مانند طراحی و توسعة شبکه‌های آبیاری و زهکشی، آبگیری از رودخانه و غیره است. مدل‌های آماری و رگرسیونی از معمول‌ترین روش‌های تحلیل هستند که اغلب با توجه به حل خطی این پدیده‌ها، نتایجی همراه با خطا ارائه داده‌اند. مدل‌های هیدرولیکی به‌دلیل نیاز به داده‌های زیاد و گاهی در دسترس نبودن داده‌های مورد نیاز و دقیق نبودن داده‌ها به‌علت خطای انسانی برای شبیه‌سازی رسوبات، همیشه نمی‌توان به آن‌ها اعتماد کرد. امروزه سیستم هادی هوشمند فازی و عصبی با توجه به توانایی در حل پدیده‌های غیرخطی و پیچیده، کاربردهای فراوانی در مسائل مختلف مهندسی آب از جمله رسوب پیدا کرده‌اند. هدف از پژوهش حاضر نیز ارزیابی و مقایسة چهار روش مدل‌های فازی-عصبی تطبیقی (ANFIS)، ماشین بردار پشتیبان (SVM)، برنامه‌ریزی بیان ژن (GEP) و روش گروهی کنترل داده‌‏ها GMDH در برآورد بار رسوب ایستگاه حسن‌آباد رودخانة تیرة استان مرکزی است. بدین‌منظور به عملکرد چهار نوع مدل در شبیه‌سازی بار رسوبی رودخانه‌ها پرداخته، سپس نتایج چهار روش با یک‌دیگر و با نتایج منحنی سنجه مورد مقایسه قرار گرفت. نتایج بیان‌گر عملکرد قابل‌قبول مدل‌ها نسبت به منحنی سنجه است. هم‌چنین، نتایج برتری مدل (GMDH) با بیش‌ترین ضریب تبیین (R2) با مقدار 99/0 و کم‌ترین ریشة میانگین مربعات خطا (RMSE) بر حسب تن در روز با مقدار 0038/0 نشان داد. در این خصوص کارآیی مدل (GEP) تا حدی بهتر از مدل‌های SVM و ANFIS بود. در مرحلة بعد، از بهترین الگوی انتخابی مدل‌های ANFIS، SVM و GEP به‌عنوان ورودی مدل GMDH استفاده شد. نتایج بیان‌گر عملکرد قابل‌قبول مدل GMDH با بیش‌ترین ضریب تبیین (R2) برابر 99/0 و 98/0 و کم‌ترین ریشة میانگین مربعات خطا به‌ترتیب برابر 0038/0 و 0045/0 تن در روز شد. نتایج به‌دست آمده نشان داد هر چهار روش داده‌کاوی بررسی شده به‌مراتب نتایج بهتری نسبت به منحنی سنجة رسوب ارائه می‌کنند.

کلیدواژه‌ها

موضوعات


References
Adnan, R.M., Yaseen, Z.M., Heddam, S., Shahid, S., Sadeghi-Niaraki, A., & Kisi, O. (2022). Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy system model. International Journal of Sediment Research. 37(10), 383–398. doi:10.1016/j.ijsrc.2021.10.001
Beiranvand, N., Sepahvand, A., & Haghizadeh, A. (2023). Suspended sediment load modeling by machine learning algorithms in low and high discharge periods (Case study: Kashkan watershed). Water and Soil Management and Modelling, 3(2), 50-65. doi: 10.22098/mmws.2022.11262.1115.[In Persian]
Doroudi, S., Sharafati, A., & Mohajeri, S.H. (2021). Estimation of daily suspended sediment load using a novel hybrid support vector regression model incorporated with observer-teacherlearner-based optimization method. Complexity, 8, 1-13. doi:10.1155/2021/5540284
Duan, W.L., He, B., Takara, K., Luo, P.P., Nover, D., & Hu, M.C. (2015). Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW, Hydrology and Earth System Sciences, 19, 1293-1306. doi:10.5194/hess-19-1293-2015
Eder, A., Strauss, P., Krueger, T., Quinton, J.N. & Quinton, B. (2010). A Comparative calculation of suspended sediment loads with respect to hysteresis effects (in the Petzenkirchen catchment), Austria. Journal of Hydrology, 389(1-2), 168-176. doi:10.1016/j.jhydrol.2010.05.043
Keshtegar, B., Piri, J., Hussan, W.U., Ikram, K., Yaseen, M., Kisi, O., Adnan, R.M., Adnan, M. & Waseem, M. (2023). Prediction of sediment yields using a data-driven radial M5 tree model. Water 2023,15, 1437. doi:10.3390/w15071437
Kisi, O. & Shiri, J. (2012). River suspended sediment estimation by climate variables implication: Comparative Study among soft computing techniques. Computer and Geosciences, 43, 73-82. doi:10.1016/j.cageo.2012.02.007
Kisi, O., Yuksel, I., & Dogan, E., (2008). Modelling daily suspended sediment of rivers in Turkey using several datadriven techniques. Hydrological Sciences Journal, 53(6), 1270-1285. doi:10.1623/hysj.53.6.1270
Mehrizi Haeri, A.A. (2003) Data mining: concepts, methods and applications. Master's thesis, Allameh Tabatabai University, Theran, Iran. [In Persian]
Mohammadi, S. (2019). The suspended sediment load modeling by artificial neural networks, neural-fuzzy and rating curve in Hlilrood watershed. Watershed Engineering and Management, 11(2), 452-466. doi: 10.22092/ijwmse.2017.108140.
1219. [In Persian]
Moradinejad, A., Davod Maghami, D., & Moradi, M. (2020). Effectiveness assessment of suspended sediment load estimation methods in the Ghar Chai River. Environment and Water Engineering, 5(4), 328-338. doi: 10.22034/jewe.2020.211925.1341. [In Persian]
Nikpour, M.R. & Sani Khani, H. (2016). Modeling of river suspended sediments using soft calculations (Darah-Rood River). Journal of Irrigation and Water Engineering, 8(30), 29-44. [In Persian]
Nourani, V., Gokcekus, H., & Gelete, G. (2020). Estimation of suspended sediment load using
artificial intelligence-based ensemble model. Complexity, 1-19. doi:10.1155/2021/6633760
Qobadian, R., & Shokri, H. (2018). Numerical investigation of factors affecting the distribution of unbalanced sediment concentration in natural rivers (case study: Qarasu River, Kermanshah). Water and Soil, 2(34), 241-253. doi: 10.22067/jsw.v34i2.7632 [In Persian]
Rahul, A.K., Shivhare, N., Kumar, S., Dwivedi, S.B., & Dikshit, P.K.S. (2021). Modelling of daily suspended sediment concentration using FFBPNN and SVM algorithms. Journal of Soft Computing in Civil Engineering, 5(2),120-134. 10.22115/scce.2021.283137.1305.
Russel S.O. & Campbell. P.F. )1996(. Reservoir operating rules with fuzzy programming. Journal of Water Resources Planning and Management, 122 (3), 165–170.
Safaian Hamza Kalai, N., & Ali Zamir, M. (2018). Modeling suspended sediment load using smart nonlinear regression model based on genetic algorithm and multilayer artificial neural network (case study of Minab river). The 3rd International Conference on Soft Computing, Gilan, Iran, Pp. 1-10. [In Persian]
Sattari, Mohammad Taghi, Rezazadeh Joudi, Ali, Safdari, Forough, & Ghahramanian, Faraz. (2016). Performance Evaluation Of M5 Tree Model And Support Vector Regression Methods In Suspended Sediment Load Modeling. Journal Of Water And Soil Resources Conservation, 6(1), 109-124. https://sid.ir/paper/232207/en. [In Persian]
Sheikhali Pour, Z., Hassan Pour, F., & Azimi, V. (2015). Comparison of artificial intelligence methods in estimation of suspended sediment load (Case Study: Sistan River). Journal of Water and Soil Conservation, 22(2), 41-60. dor:20.1001.1.23222069.1394.22.2.3.7
Shojaeezadeh, S.A., Nikoo, M.R., McNamara, J.P., AghaKouchak, A., & Sadegh, M. (2018).
Stochastic modeling of suspended sediment load in alluvial rivers. Advances in Water
Resources
, 119, 188-196. doi:10.1016/j.
advwatres.2018.06.006
Tayfur, G., )2012(. Soft computing in water
resources engineering: Artificial neural networks,  fuzzy logic and genetic algorithms. WIT Press, Dorset. UK, 288 pages.
 Walling, D.E., & Webb, B.W. (1988). The reliability of rating curve estimates of suspended sediment yield: some further comments. Sediment Budgets (Proceedings of the Porto Alegre Symposium), (174), 337–350.
Wu, W., Dandy, G & Maier, H. (2014). Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modeling. Environmental Modeling and Software. 54, 108-127. doi: 10.1016/j.envsoft.2013.12.016