بررسی توابع تولید آب مصرفی در تعیین عملکرد دو رقم هندوانه در تنش آبی

نوع مقاله : پژوهشی

نویسندگان

1 استادیار/ گروه آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 محقق/ تحقیقات حاصلخیزی خاک و تغذیه گیاه، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 محقق/ بخش خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی جنوب استان کرمان، کرمان، ایران

4 محقق/ گروه آبیاری و فیزیک خاک، مؤسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

چکیده

نظر به توجه ویژه به گیاه هندوانه به عنوان یکی از  گیاهان پر مصرف در الگوی کشت ایران لازم بود تا پژوهشی در این زمینه جهت بررسی مقدار نیاز آبی و کاهش عملکرد آن در شرایط تنش آبی انجام پذیرد. در این راستا پژوهشی در قالب طرح بلوک­های تصادفی در 4 تیمار آبیاری کامل، 75 درصد نیاز آبی، 50 درصد نیاز آبی و 30 درصد نیاز آبی در مزرعه تحقیقاتی موسسه تحقیقات خاک و آب استان البرز و مرکز تحقیقات جنوب استان کرمان انجام شد. نتایج نشان داد که نیاز آبی استاندارد هندوانه در کرج حدود 488 میلی­متر و در منطقه جیرفت کرمان 423 میلی­متر است و با نیاز آبی تخمین زده شده توسط سامانه نیاز آب انطباق مناسبی دارد. از طرف دیگر بیشترین ضریب حساسیت در دوره 60 تا 80 روز پس از کشت در دوره میانی رشد رخ داد و تابع تولید واسنجی شده با دقت مناسبی عملکرد گیاه را در تنش­های اعمال شده برآورد کرد که شاخص­های آماری رقم چارلستون RMSE، NRMSE، MBE، d و EF به ترتیب 497، 0.02، 119- ، 0.99 و 0.98 و رقم کریمسون بترتیب 568، 0.095، 536-، 0.98 و 0.96 بدست آمد لذا ضرایب حساسیت و تابع تولید ارائه شده برای شبیه ­سازی عملکرد هر دو رقم هندوانه در شرایط تنش آبی قابل قبول می­ باشد. همچنین بیشترین بهره وری در تیمار کم آبیاری 70 درصد بدست آمد و رقم کریمسون دارای بهره ­وری مصرف آب بالاتری می ­باشد. لذا این رقم با کم آبیاری 70 درصد برای کشت هندوانه توصیه می ­شود.

کلیدواژه‌ها

موضوعات


References
Abdelkhalik, A., Pascual-Sevaa, N., Inmaculada N., Ginerd A., Baixaulid, C., & Pascual, B. (2019). Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management, 212, 99–110. doi: 10.1016/j.agwat.2018.08.044
Ahmadi, A. (2022). The effect of increasing water use efficiency on improving the status of groundwater resources using WEAP model in Qazvin Plain. Water and Soil Management and Modelling, 2(1), 53-62. doi: 10.22098/mmws.2022.9333.1034
Bastos, E.A., Silva, C.R., Rodrigues, B.H.N., Andrade, J.R., & Ibiapina, L.M.M. (2012). Evapotranspiration and crop coefficient of drip irrigated watermelon in piaui coastline, Brazil. Engenharia Agricola, 32, 582-590. doi: 10.1590/S0100-69162012000300017
Doorenbos, J., & Kassam, A.H. (1979). Yield Response to Water. FAO Publication, 33, Rome.
Ebrahimipak, N., Egdernezhad, A., Tafteh, A., & Ahmadee, M. (2019). Evaluation of aquaCrop, WOFOST, and cropsyst to simulate rapeseed yield. Iranian Journal of Irrigation and Drainage, 13(3), 715-726. doi:20.1001.1.20087942.1398.13.3.14.4
Ebrahimipak, N., Tafteh, A., Abbasi, F., & Baghani, J. (2022). Estimation the actual amount of wheat irrigation water using the NIAZAB system and compare with the farm measurement. Iranian Journal of Soil and Water Research. doi: 10.22059/ijswr.2022.346273.669328
Egdernezhad, A., EbrahimiPak, N.A., Tafteh, A., & Ahmadee, M. (2019). Canola irrigation scheduling using AquaCrop model in Qazvin Plain. Water Management in Agriculture, 5(2), 53-64. doi: 20.1001.1.24764531.1397.5.2.7.2
Erdem, Y., Erdem, T., Orta, A.H.,  & Okursoy, H. (2005). Irrigation scheduling for watermelon with crop water stress index (CWSI). Journal of Central European Agriculture, 6(4), 449-460. 10.22059/ijswr.2018.261912.667967
Erdem, Y., & Yuksel, A.N. (2003). Yield response of watermelon to irrigation
shortage. Scientia Horticulturae, 98(4), 365-383. doi:10.1016/S0304-4238(03)00019-0
FAO, (2017). FAOSTAT Website. Accesed on 22 December 2017. http://www.fao.org/faostat/es/#data/QC.
FAO, (2016). AQUASTAT Website. Accessed on 2 January 2018. http://www.fao.org/nr/water/aquastat/ water_use/index.stm.
García-Mendívil, H.A., & Sorribas, F.J. (2021). Effect of citrullus amarus accessions on the population dynamics of meloidogyne incognita and M. javanica and watermelon yield. Scientia Horticulturae, 275, 109680. doi:10.1016/j.scienta.2020.109680
Hochmuth, H., Thevs, N., & He, P. (2015). Water allocation and water consumption of irrigation agriculture and natural vegetation in the Heihe River watershed, NW China. Environmental. Earth Sciences, 73, 5269–5279. doi:10.1007/s12665-014- 3773-9.
Jafari, P., Jalali, A.H., & Tadaionfar, S. (2016). Comparing the irrigation water efficiency, yield and yield components of watermelon in different depths of furrow and different plant densities. Journal of Crop Production and Processing, 5(18), 291-299. 10.18869/acadpub.jcpp.5.18.291
Jamieson, P.D., Porter, J.R., & Wilson, D.R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27, 337–350. doi:10.1016/0378-4290(91)90040-3
Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. (2019). Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy, 181, 1298–1320.  doi:10.1016/j.energy.2019.06.002
karimi, M., & Jolaini, M. (2017). Evaluation of agricultural water productivity indices in major field crops in Mashhad Plain (technical note). Journal of Water and Sustainable Development, 4(1), 133-138. doi: 10.22067/jwsd.v4i1.52783
Khari, D., Egdernezhad, A., & Ebrahimipak, N. (2023). Comparison of artificial intelligence models and experimental models in estimating reference evapotranspiration (Case study: Ramhormoz synoptic station). Water and Soil Management and Modelling, 3(2), 112-124. doi: 10.22098/mmws.2022.11293.1117
khorramian, M., & Zarifeenia, N. (2018). The effect of tape irrigation levels and scheduled surface irrigation on yield and irrigation water use productivity of two watermelon varieties in Khuzestan. Irrigation Sciences and Engineering, 41(1), 73-84. doi: 10.22055 /jise. 2017. 17185 . 1244
Kirnak, H., & Dogan, E. (2009). Effect of seasonal water stress imposed on drip irrigated second crop watermelon grown in semi-arid climatic conditions. Irrigation Science, 27,155-164. doi: 10.1007/s00271-008-0130-3
Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P., Buyukcangaz, H., & Demir, A.O. (2015). deficit irrigation effects on watermelon (citrullus vulgaris) in a sub humid environment. The Journal of Animal and Plant Sciences, 25,1652-1659. https:// doi.org/ 10.3389 /fpls .2023.1153835
Li, G.H., Zhao, B., Dong, S.T., Zhang, J.W., Liu, P., & Lu, W.P. (2020). Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize. Agricultural Water Management,  227, 105834. doi:10.1016/j. agwat.2019.105834
Miller, G.A., Farahani, H.J., & Lankford, D. (2010). Set points for watermelon drip irrigation using capacitance probes. Third International symposium of Soil Sensor, Spain, Pp. 185-195.
Parkhideh, J., Barzegar, T., & Nekonam, F. (2018). Growth, yield and physiological responses of watermelon cv. Charleston Gray grafted on bitter apple (Citrullus colocynthis L.) rootstock under deficit irrigation stress. Iranian Journal of Horticultural Science, 49(2), 539-550. doi: 10.22059/ijhs.2017.233823.1258
Pejić, B., Mačkić, K., Pavković, S., Ljevnaić-Mašić, B., Aksić, M., & Gvozdanović-Varga, J. (2016). Water-yield relations of drip irrigated watermelon in temperate climatic conditions. Contemporary Agriculture, 65(1-2), 53-59. doi:10.1515/contagri-2016-0009
Raes, D., Greets, E., Wellens, J., & Sahli, A. (2006). Simulation of yield decline as a result of water stress with a robust soil water balance model. Agricultural Water Management, 81, 335-357. Doi: eee: agiwat: v:81:y: 2006:i:3:p:335-357
Şimşek, M., Kaçıra, M., & Tonkaz, T. (2004). The effects of different drip irrigation regimes
on watermelon [Citrullus lanatus (Thunb.)] yield and yield components under semi-arid
climatic conditions. Australian Journal of Agricultural Research, 55(11), 1149-1157. https://doi.org/10.1071/AR03264
Soltani, F., Shajari, M., & Noory, H. (2018). Evaluation of growth, yield, and water use efficiency and evaporation transpiration of some watermelon accessions at drought stress conditions under different irrigation regimes. Iranian Journal of Horticultural Science, 49(2), 351-363. doi: 10.22059/ijhs.2017.207658.1020
Steduto, P., Hsiao, T.C., Fereres, E., & Raes, D. (2012). Crop Yield Response to Water. FAO Irrigation and Drainage Paper, 66th Edition, Rome, Italy.
Tafteh, A., Ebrahimipak, N.A., Babazadeh, H., & Kaveh, F. (2013). Evaluation of improvement of crop production functions for simulation winter wheat yields with two types of yield response factors. Journal of Agricultural Science, 5, 111-122. doi: 10.5539/jas.v5n3p111
Tafteh, A., Babazadeh, H., Ebrahimipak, N.A., & Kaveh, F. (2014). Optimization of irrigation water distribution using the MGA method and comparison with a linear programming method. Journal of Irrigation and Drainage, 63(5), 590–598. doi:10.1002/ird.1869
Turner, N.C. (2004). Agronomic options for improving rainfall-use efficiency of crops in
dryland farming systems. Journal of Experimental Botany, 55, 2413–2425. doi: 10.1093/jxb/erh154
Wang, H., Zhou, G.S., Jiang, Y.L., Shi, Y.H., & Xu, Z.Z. (2017). Photosynthetic acclimation and leaf traits of Stipa bungeana in response to elevated CO2 under five different watering conditions. Photosynthetica, 55, 164–175. doi:10.1007/ s11099-016-0239-1
Wang, Z.H., Li, S.X., & Malhi, S. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal Science Food Agriculture, 88, 7–23. doi:10.1002/jsfa.3084
Willmott, C.J. (1982). Some comments on the evaluation of model performance. Bulletin of American Meteorology Society, 63, 1309-1313. doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
Yang, H., Du, T., Qiu, R., Chen, J., Wang, F., Li, Y., Wang, C., Gao, L., & Kang, S. (2017).
Improved water use efficiency and fruit quality of greenhouse crops under regulated
deficit irrigation in northwest China. Agricultural Water Management, 179, 193–204.
Yin, S.M. (2012). Research on water-saving and quality-regulated irrigation models of special economic crops in greenhouses in arid areas of Northwest China. D. Northwest A & F University. Agronomy for Sustainable Development, 36, 1–21.