پاکپرور، مجتبی، چراغی، سیدعلی محمد، مجیدی، علیرضا، قهاری، غلامرضا، و نکوئیان، غلامعلی (1400). مقایسه مدلهای Hydrus و LEACHW در شبیه سازی حرکت آب در خاک برای بررسی میزان تغذیه خالص به آبخوان در سامانه گسترش سیلاب ایستگاه کوثر، پروژه تحقیقاتی شماره 940078-001-29-50-4، پژوهشکده حفاظت خاک و آبخیزداری، 96صفحه.
References
Altafi Dadgar, M., Nakhaei, M., Porhemmat, J., Biswas, A., & Rostami, M. (2018). Transient potential groundwater recharge under surface irrigation in semi arid environment: An experimental and numerical study.
Hydrological Processes, 32(25), 3771-3788.
doi:10.1002/hyp.13287
Bellot, J., & Chirino, E. (2013). Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas.
Ecological Modelling, 266, 30-41.
doi:10.1016/j.ecolmodel.2013.07.002
Berend, J.E. (1967). An analytical approach to the clogging effect of suspended matter. Hydrological Sciences Journal, 12(2), 42-55. doi:10.1080/02626666709493523
Bouwer, H. (1986). Intake rate, cylinder infiltrometer. Pp. 825-844. In: Klute, A., Ed., Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Madison WI, American Society of Agronomy and Soil Science Society of America.
Bouwer, H., & Rice, R.C. (1984). Hydraulic Properties of Stony Vadose Zones. Ground Water, 22(6), 696-705.
Dafny, E., & Šimůnek, J. (2016). Infiltration in layered loessial deposits: Revised numerical simulations and recharge assessment.
Journal of Hydrology, 538, 339-354.
doi:10.1016/j.jhydrol.2016.04.029
Domínguez-Niño, J.M., Arbat, G., Raij-Hoffman, I., Kisekka, I., Girona, J., & Casadesús, J. (2020). Parameterization of soil hydraulic parameters for hydrus-3d simulation of soil water dynamics in a drip-irrigated orchard.
Water, 12(7), 1858.
doi:10.3390/w12071858
Elrick, D.E., Reynolds, W.D., 1992. Infiltration from Constant-Head Well Permeameters and Infiltrometers. Pp. 1-24, In: Topp, G.C., Reynolds, W.D., Green, R.E. (Eds.), Advances in Measurement of Soil Physical Properties: Bringing Theory into Practice, SSSA, Madison WI.
Enfield, C., Hsieh, J., & Warrick, A. (1973). Evaluation of water flux above a deep water table using thermocouple psychrometers. Soil Science Society of America Journal, 37(6), 968-970.
Evett, S.R., Schwartz, R.C., Casanova, J.J., & Heng, L.K. (2012a). Soil water sensing for water balance, ET and WUE.
Agricultural Water Management, 104, 1-9.
doi:10.1016/j.agwat.2011.12.002
Filomena, C., Dolores, F.M., Antonella, S., & Giuseppe, S. (2008). Variation of infiltration rate through karstic surfaces due to land use changes: A case study in Murgia (SE-Italy).
Engineering Geology, 99(3–4), 210-227.
doi:10.1016/j.enggeo.2007.11.018
Gee, G.W., & Hillel, D. (1988). Groundwater recharge in arid regions. Review and critique of estimation methods.
Hydrological Processes, 2(3), 255-266.
doi:10.1002/hyp.3360020306
Gee, G.W., & Or, D. (2002). Particle-size analysis. Pp. 255-293, In: Dane, J.H., & Topp, G.C., eds., Methods of Soil Analysis. Part 4: Physical Methods, Madison, WI, American Society of Agronomy.
Grossman, R.B., & Reinsc, T.G. (2002). Bulk density and linear extensibility. Pp. 201-228, In: Dane, J. H., & Topp, G.C., eds., Methods of soil analysis, part4: Physical methods, Madison WI, SSSA Book Ser. 5. SSSA.
Hashemi, H., Berndtsson, R., Kompani-Zare, M., & Persson, M. (2013). Natural vs. artificial groundwater recharge, quantification through inverse modeling. Hydrology Earth System Sciences, 17(2), 637-650. doi:10.5194/hess-17-637-2013
Hillel, D., & Baker, R.S. (1988). A descriptive theory of fingering during infiltration into layered soils.
Soil Science, 146(1), 51-56. doi:
10.1097/00010694-198807000-00008
Hornero, J., Manzano, M., Ortega, L., & Custodio, E. (2016). Integrating soil water and tracer balances, numerical modelling and GIS tools to estimate regional groundwater recharge: Application to the Alcadozo Aquifer System (SE Spain).
Science of The Total Environment, 568, 415-432.
doi:10.1016/j.scitotenv.2016.06.011
Hosmer, D.W., Jr., S.L., & Sturdivant, R.X. (2013). Assessing the Fit of the Model. Wiley Series in Probability and Statistics.
Hou, L., Wang, X.-S., Hu, B.X., Shang, J., & Wan, L. (2016). Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation.
Journal of Hydrology, 540, 386-396.
doi:10.1016/j.jhydrol.2016.06.036
Kawamoto, K., Mashino, S., Oda, M., & Miyazaki, T. (2004). Moisture structures of laterally expanding fingering flows in sandy soils.
Geoderma, 119(3–4), 197-217.
doi:10.1016/j.geoderma.2003.07.001
Kowsar, S.A. (1991). Floodwater spreading for desertification control: an integrated approach. Desrtification Control Bulliten, 19, 3-18.
Min, L., Shen, Y., & Pei, H. (2015). Estimating groundwater recharge using deep vadose zone data under typical irrigated cropland in the piedmont region of the North China Plain.
Journal of Hydrology, 527, 305-315.
doi:10.1016/j.jhydrol.2015.04.064
Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., & Veith, T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885-900. doi:10.13031/2013.23153
Nash, J.E., & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I: A discussion of principles.
Journal of Hydrology, 10(3), 282-290.
doi:10.1016/0022-1694(70)90255-6
Naylor, S., Letsinger, S.L., Ficklin, D.L., Ellett, K.M., & Olyphant, G.A. (2016). A hydropedological approach to quantifying groundwater recharge in various glacial settings of the mid-continental USA.
Hydrological Processes, 30(10), 1594-1608.
doi:10.1002/hyp.10718
Pakparvar, M., Cornelis, W., Gabriels, D., Mansouri, Z., & Kowsar, S.A. (2016a). Enhancing modelled water content by dielectric permittivity in stony soils.
Soil Research, 54(3), 360-370. doi:
10.1071/SR15154
Pakparvar, M., Cornelis , W., Pereira, L.S., Gabriels, D., Hosseinimarandi, H., Edraki, M., & Kowsar, S.A. (2014). Remote sensing estimation of actual evapotranspiration and crop coefficients for a multiple land use arid landscape of southern Iran with limited available data.
Journal of Hydroinformatics, 16(6), 1441-1460.
doi:10.2166/hydro.2014.140
Pakparvar, M., Hashemi, H., Rezaei, M., Cornelis, W. M., Nekooeian, G., & Kowsar, S.A. (2018). Artificial recharge efficiency assessment by soil water balance and modelling approaches in a multi-layered vadose zone in a dry region.
Hydrological Sciences Journal, 63(8), 1183-1202.
doi:10.1080/02626667.2018.1481962
Pakparvar, M., Walraevens, K., Cheraghi, S.A. M., Ghahari, G., Cornelis, W., Gabriels, D., & Kowsar, S.A. (2016b). Assessment of groundwater recharge influenced by floodwater spreading: an integrated approach with limited accessible data.
Hydrological Sciences Journal, 62(1), 147-164.
doi:10.1080/02626667.2016.1183164
Radcliffe, D.E., & Ŝimùnek, J. (2010). Soil physics with Hydrus modeling and application. Boca Raton, FL, CRC Press, 373 pages.
Reynolds, W.D., Elrick, D.E., & Youngs, E.G. (2002). Ring or Cylinder Infiltrometers (Vadose Zone), Pp. 818-826, In: Dane, J.H., & Topp, G.C., eds., Methods of soil analysis, part4: Physical methods, Madison WI, SSSA Book Ser. 5. SSSA.
Samani, Z., Cheraghi, A., & Willardson, L. (1989). Water Movement in Horizontally Layered Soils. Journal of Irrigation and Drainage Engineering, 115, 449-456.
Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions.
Hydrological Processes, 20(15), 3335-3370.
doi:10.1002/hyp.6335
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., & van Genuchten, M.T. (2013). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. version 4.16, Department of Environmental Sciences, University of California Riverside, Riverside, USA.
Solone, R., Bittelli, M., Tomei, F., & Morari, F. (2012). Errors in water retention curves determined with pressure plates: Effects on the soil water balance.
Journal of Hydrology, 470–471, 65-74.
doi:10.1016/j.jhydrol.2012.08.017
Stafford, M.J., Holländer, H.M., & Dow, K. (2022). Estimating groundwater recharge in the assiniboine delta aquifer using HYDRUS-1D.
Agricultural Water Management, 267, 107514.
doi:10.1016/j.agwat.2022.107514
Stephens, D.B., & Knowlton, R. (1986). Soil water movement and recharge through sand at a semiarid site in New Mexico. Water Resources Research, 22(6), 881-889. doi:10.1029/WR022i006p00881
Tonkul, S., Baba, A., Şimşek, C., Durukan, S., Demirkesen, A.C., & Tayfur, G. (2019). Groundwater recharge estimation using HYDRUS 1D model in Alaşehir sub-basin of Gediz Basin in Turkey. Environmental Monitoring and Assessment, 191(10), 610. doi:10.1007/s10661-019-7792-6
Touhami, I., Andreu J.M., Chirino, E., Sánchez, J.R., Pulido-Bosch, A., Martínez-Santos, P., Moutahir, H., & Bellot, J. (2013). Comparative performance of soil water balance models in computing semiarid aquifer recharge:
Hydrological Sciences Journal, 59(1), 193-203.
doi:10.1080/02626667.2013.802094
Von Freyberg, J., Moeck, C., & Schirmer, M. (2015). Estimation of groundwater recharge and drought severity with varying model complexity:
Journal of Hydrology, 527, 844-857.
doi:10.1016/j.jhydrol.2015.05.025
Westenbroek, S.M., Engott, J.A., Kelson, V.A., & Hunt, R.J. (2018). SWB Version 2.0-A soil-water-balance code for estimating net infiltration and other water-budget components. U.S. Geological Survey, 6-A59, 118 pages.