References
Abdel-salam, M., Alomari, S. A., Almomani, M. H., Hu, G., Lee, S., Saleem, K., Smerat, A., & Abualigah, L. (2025). Quadruple strategy-driven hiking optimization algorithm for low and high-dimensional feature selection and real-world skin cancer classification. Knowledge-Based Systems, 315, 113286. doi: 10.1016/j.knosys.2025.113286
Ahmadianfar, I., Jamei, M., & Chu, X. (2020). A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water. Journal of Contaminant Hydrology. doi: 10.1016/j.jconhyd.2020.103641
Ahmadianfar, I., Shirvani-Hosseini, S., He, J., Samadi-Koucheksaraee, A., & Yaseen, Z. M. (2022). An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Scientific Reports. doi: 10.1038/s41598-022-08875-w
Aldrees, A., Awan, H. H., Javed, M. F., & Mohamed, A. M. (2022). Prediction of water quality indexes with ensemble learners: Bagging and boosting. Process Safety and Environmental Protection.
doi: 10.1016/j.psep.2022.10.005
Alsaedi, A. W. M., Al-Hilphy, A. R., Al-Mousawi, A. J., & Gavahian, M. (2024). Artificial Neural Network Modeling to Predict Electrical Conductivity and Moisture Content of Milk During Non-Thermal Pasteurization: New Application of Artificial Intelligence (AI) in Food Processing. Processes, 12(11), 2507.
doi: 10.3390/pr12112507
Ali Khan, M., Izhar Shah, M., Faisal Javed, M., Ijaz Khan, M., Rasheed, S., El-Shorbagy, M. A., Roshdy El-Zahar, E., & Malik, M. Y. (2022). Application of random forest for modelling of surface water salinity. Ain Shams Engineering Journal.
doi: 10.1016/j.asej.2021.11.004
Chia, S. L., Chia, M. Y., Koo, C. H., & Huang, Y. F. (2022). Integration of advanced optimization algorithms into least-square support vector machine (LSSVM) for water quality index prediction. Water Supply.
doi: 10.2166/ws.2021.303
Dulger Altıner, D., Yıkmış, S., Şimşek, M. A., Türkol, M., Tokatlı Demirok, N., & Celik, G. (2024). Impact of thermosonication treatment on parsley juice: particle swarm algorithm (PSO), multiple linear regression (MLR), and response surface methodology (RSM). ACS omega, 9(27), 29585-29597.
doi: 10.1021/acsomega.4c02749
Ehteram, M., & Soltani-Gerdefaramarzi, S. (2025). Advanced hybrid frameworks for water quality index prediction. Ain Shams Engineering Journal, 16(8), 103478.
doi: 10.1016/j.asej.2025.103478
Ekemen Keskin, T., Özler, E., Şander, E., Düğenci, M., & Ahmed, M. Y. (2020). Prediction of electrical conductivity using ANN and MLR: a case study from Turkey. Acta Geophysica. doi: 10.1007/s11600-020-00424-1
Ghanbari-Adivi, E., Ehteram, M. CEEMDAN-BILSTM-ANN and SVM Models: Two Robust Predictive Models for Predicting River flow. Water Resour Manage 39, 3235–3271 (2025). doi: 10.1007/s11269-025-04105-w
Jamei, M., Ali, M., Karimi, B., Karbasi, M., Farooque, A. A., & Yaseen, Z. M. (2023). Surface water electrical conductivity and bicarbonate ion determination using a smart hybridization of optimal Boruta package with Elman recurrent neural network. Process Safety and Environmental Protection, 174, 115-134.
doi: 10.1016/j.psep.2023.03.062
Jamshidzadeh, Z., Latif, S. D., Ehteram, M., Sheikh Khozani, Z., Ahmed, A. N., Sherif, M., & El-Shafie, A. (2024). An advanced hybrid deep learning model for predicting total dissolved solids and electrical conductivity (EC) in coastal aquifers. Environmental Sciences Europe.
doi: 10.1186/s12302-024-00850-8
Kadkhodazadeh, M., & Farzin, S. (2021). A Novel LSSVM Model Integrated with GBO Algorithm to Assessment of Water Quality Parameters. Water Resources Management.
doi: 10.1007/s11269-021-02913-4
Karbasi, M., Ali, M., Bateni, S. M., Jun, C., Jamei, M., Farooque, A. A., & Yaseen, Z. M. (2024). Multi-step ahead forecasting of electrical conductivity in rivers by using a hybrid Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) model enhanced by Boruta-XGBoost feature selection algorithm. Scientific reports, 14(1), 15051.
doi: 10.1038/s41598-024-65837-0
Khatti, J., Khanmohammadi, M., & Fissha, Y. (2024). Prediction of time-dependent bearing capacity of concrete pile in cohesive soil using optimized relevance vector machine and long short-term memory models. Scientific Reports, 14(1), 32047.
doi: 10.1038/s41598-024-83784-8
Kumar, D., Singh, V. K., Abed, S. A., Tripathi, V. K., Gupta, S., Al-Ansari, N., Vishwakarma, D. K., Dewidar, A. Z., Al‑Othman, A. A., & Mattar, M. A. (2023). Multi-ahead electrical conductivity forecasting of surface water based on machine learning algorithms. Applied Water Science.
doi: 10.1007/s13201-023-02005-1
Li, H., Li, X., Yang, Z., Liu, Z., Bu, J., & Wang, Y. (2024). Loaded coal-rock temperature denoising algorithm based on CEEMD and adaptive NIWT with NIWOA. Measurement, 236, 115176.
doi: 10.1016/j.measurement.2024.115176
Mattas, C., Dimitraki, L., Georgiou, P., & Venetsanou, P. (2021). Use of factor analysis (Fa), artificial neural networks (anns) and multiple linear regression (mlr) for electrical conductivity prediction in aquifers in the gallikos river basin, Northern Greece. Hydrology.
doi: 10.3390/hydrology8030127
Mienye, I. D., Swart, T. G., & Obaido, G. (2024). Recurrent neural networks: A comprehensive review of architectures, variants, and applications. Information, 15(9), 517.
doi: 10.3390/info15090517
Muhammad, A. U., Djigal, H., Muazu, T., Adam, J. M., Ba, A. F., Dabai, U. S., Tijjani, S., Yahaya, M. S., Ashiru, A., Kumshe, U. M. M., Aliyu, S., & Richard, F. A. (2023). An autoencoder-based stacked LSTM transfer learning model for EC forecasting. Earth Science Informatics.
doi: 10.1007/s12145-023-01096-3
Nakhaei-Kohani, R., Ali Madani, S., Mousavi, S. P., Atashrouz, S., Abedi, A., Hemmati-Sarapardeh, A., & Mohaddespour, A. (2022). Machine learning assisted Structure-based models for predicting electrical conductivity of ionic liquids. Journal of Molecular Liquids.
doi: 10.1016/j.molliq.2022.119509
Özcan, A. R., Mehta, P., Sait, S. M., Gürses, D., & Yildiz, A. R. (2025). A new neural network–assisted hybrid chaotic hiking optimization algorithm for optimal design of engineering components. Materials Testing, (0).
doi: 10.1515/mt-2024-0519
Oladejo, S. O., Ekwe, S. O., & Mirjalili, S. (2024). The Hiking Optimization Algorithm: A novel human-based metaheuristic approach. Knowledge-Based Systems, 296, 111880.
doi: 10.1016/j.knosys.2024.111880
Pashaei, E., Pashaei, E., & Mirjalili, S. (2025). Binary hiking optimization for gene selection: Insights from HNSCC RNA-Seq data. Expert Systems with Applications, 268, 126404.
doi: 10.1016/j.eswa.2025.126404
Reza, A. F., Singh, R., Verma, R. K., Singh, A., Ahn, Y. H., & Ray, S. S. (2024). An integral and multidimensional review on multilayer perceptron as an emerging tool in the field of water treatment and desalination processes. Desalination, 117849.
doi: 10.1016/j.desal.2024.117849
Sağ, T. (2024, September). Binary Hiking Optimization Algorithm. In International Conference on Cellular Automata for Research and Industry (pp. 231-242). Cham: Springer Nature Switzerland.
doi: 10.1007/978-3-031-71552-5_19
Shah, M. I., Javed, M. F., & Abunama, T. (2021). Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques. Environmental Science and Pollution Research.
doi: 10.1007/s11356-020-11490-9.
Shin, J., Yoon, S., Park, N. S., & Kim, Y. (2025). Development of Water Quality Prediction Model Using LTSF-Linear and Complete Ensemble Empirical Mode Decomposition. Desalination and Water Treatment, 101254.
doi: 10.1016/j.dwt.2025.101254
Song, C., Yao, L., Hua, C., & Ni, Q. (2021). A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environmental Monitoring and Assessment.
doi: 10.1007/s10661-021-09127-6
Talebzadeh, H., Talebzadeh, M., Satarpour, M., Jalali, F., Farhadi, B., & Vahdatpour, M. S. (2024). Enhancing breast cancer diagnosis accuracy through genetic algorithm-optimized multilayer perceptron. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(4), 4433-4449.
doi: 10.1007/s41939-024-00487-3
Wu, K., Guo, Y., Wang, K., & Chen, Z. (2025). Low-carbon economic optimization for flexible DC distribution networks based on the hiking optimization algorithm. Energy Informatics, 8(1), 44.
doi: 10.1186/s42162-025-00486-9
Xu, D. Mei, Li, Z., & Wang, W. Chuan. (2024). An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy. Journal of Hydrology.
doi: 10.1016/j.jhydrol.2023.130558
Yahia Ahmed Abuker, Y., Liu, Z., & Mao, L. (2025). Water Management Fault Diagnosis of Polymer Electrolyte Membrane Fuel Cells Based on Complementary Ensemble Empirical Mode Decomposition and Sensitivity Analysis. Journal of Energy Engineering, 151(3), 05025001.
doi: 10.1061/JLEED9.EYENG-5508
Zhang, X., Wu, X., He, S., & Zhao, D. (2021). Precipitation forecast based on CEEMD–LSTM coupled model. Water Supply.
doi: 10.2166/ws.2021.237
Zhou, M., Zhang, Y., Wang, J., Shi, Y., & Puig, V. (2022). Water Quality Indicator Interval Prediction in Wastewater Treatment Process Based on the Improved BES-LSSVM Algorithm. Sensors.
doi: 10.3390/s22020422
Zhao, M., & Zhou, X. (2024). Multi-Step short-term wind power prediction model based on CEEMD and improved snake optimization algorithm. IEEE Access.
doi: 10.1109/ACCESS.2024.3385643
Zhou, M., Yu, J., Wang, M., Quan, W., & Bian, C. (2024). Research on the combined forecasting model of cooling load based on IVMD-WOA-LSSVM. Energy and Buildings, 317, 114339. doi: 10.1016/j.enbuild.2024.114339