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Abstract

Accurate prediction of electrical conductivity (EC) concentrations in river water is essential for effective water
quality management and environmental protection. This study develops a novel hybrid model, named HOA -
CEEMD-LSSVM, that integrates the hiking optimization algorithm (HOA), complementary ensemble empirical
mode decomposition (CEEMD), and least square support vector machine (LSSVM) to forecast daily EC
concentrations in the Aidoghmoush River, Iran. HOA simultaneously optimizes key parameters of CEEMD and
LSSVM to enhance prediction accuracy. CEEMD decomposes complex time series into intrinsic mode functions
(IMFs), which exhibitmore predictable patterns, serving as inputs to the LSSVM predictor. The model’s
performance is evaluated through multiple metrics, demonstrating significant improvements over benchmark
models in terms of R? and Kling-Gupta Efficiency (KGE). The proposed model enhances the R? and KGE values
of other prediction models by 1%-10 % and 3.17%-17%, respectively. Our findings show that the HAO-CEEMD-
LSSVM model can precisely forecast EC concentration. This approach provides a robust framework for capturing
the nonlinear, nonstationary characteristics of EC time series data. The model is applicable in water resource
planning, pollution control, and river ecosystem management. While showing high forecasting accuracy, its
computational complexity and black-box nature present limitations. Future work should explore parallel
computing and explainable artificial intelligence techniques to enhance efficiency and interpretability.
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1. Introduction

Electrical conductivity (EC) constitutes a
fundamental parameter in water engineering,
serving as an indicator of water suitability for
diverse applications such as irrigation, industrial
processes, and environmental management
(Ekemen Keskin et al., 2020). EC quantitatively
represents the concentration of dissolved ionic
species, including sodium, calcium, chloride, and
sulfate ions (Ali Khan et al., 2022). These ions
critically influence water characteristics such as
hardness, salinity, and electrical conductance (Ali
Khan et al., 2022).

The phenomenon of EC originates from the
mobility of dissolved ions, which carry electric
charges under an applied electric potential,
thereby facilitating the conduction of electrical
current through the aqueous medium (Shah et al.,
2021; Muhammad et al., 2023). EC in natural
water bodies exhibits variability as a consequence
of seasonal fluctuations, precipitation dynamics,
geological  substrate, and anthropogenic
influences, including agricultural runoff and
industrial effluents (Kadkhodazadeh and Farzin,
2021; Karbasi et al., 2024). Analogously, EC
variations in engineered systems, such as
desalination plants, are influenced by feedwater
composition variability, operational efficiency,
and membrane performance.

Accurate forecasting of EC concentrations is
imperative for effective management of water
resources, mitigation of pollution, and strategic
planning in irrigation and industrial contexts
(Ahmadianfar et al., 2020). Conventional
predictive models, however, are often inadequate
in addressing the complex, nonlinear, and
nonstationary behavior intrinsic to EC temporal
datasets.

Precision in EC prediction is indispensable for
multiple stakeholders involved in water resource
management. Agricultural authorities utilize EC
forecasts to optimize irrigation protocols and soil
management  interventions. Concurrently,
municipal water utilities and industrial operators
rely on EC data to enhance water treatment
efficacy and maintain operational stability. This
necessity has driven the development and
application of advanced modeling techniques,
including artificial intelligence (AD

methodologies, aimed at improving the reliability
and accuracy of EC concentration predictions.
Artificial intelligence (Al) models exhibit
exceptional capabilities in capturing complex and
nonlinear relationships inherent in water systems
(Karbasi et al., 2024). In contrast to traditional
statistical approaches, Al techniques effectively
manage large, heterogeneous datasets with
superior precision. These models learn from
historical patterns and dynamically adapt to new
data, thereby enabling accurate forecasting of
electrical conductivity (EC) fluctuations across
diverse environmental and operational conditions
(Karbasi et al., 2024). Furthermore, Al models
continuously monitor changes in water quality
parameters, facilitating the projection of future
EC trends under various climate change scenarios
(Kumar et al., 2023). By simulating the effects of
temperature variations, precipitation changes,
and sea-level rise on salinity, Al-driven
predictions  support  decision-makers  in
formulating adaptive management strategies to
uphold water quality standards in agricultural,
industrial, and municipal domains.

Al methodologies confer several advantages,
including enhanced predictive accuracy and
robustness against missing or noisy data
(Muhammad et al., 2023). Among the diverse Al
variants employed for EC prediction are K-
nearest neighbors (KNN), adaptive neuro-fuzzy
inference systems (ANFIS), long short-term
memory networks (LSTM), artificial neural
networks (ANN), support vector machines
(SVM), and decision tree-based algorithms.

A comprehensive review of prior research
underscores the high potential of Al models in
accurately estimating EC concentrations by
leveraging historical data and modeling complex
input-output relationships. Nevertheless, these
studies reveal limitations, particularly the
restricted range of Al models investigated, which
impairs predictive performance under variable
environmental conditions (Jamshidzadeh et al.,
2024). Notably, the least-square support vector
machine (LSSVM) model emerges as a
promising alternative due to its robust
generalization capacity and proficiency in
modeling nonlinear dynamics within water
quality data (Kadkhodazadeh and Farzin, 2021).
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The LSSVM model combines high prediction
accuracy with computational efficiency.

The LSSVM approach is mathematically
characterized by an equation comprising a bias
term, a weight vector, and a nonlinear mapping
function. Since the weight and bias parameters
are initially unknown, the model employs an
optimization framework to estimate these values.
A pivotal aspect of this optimization is the
inclusion of a regularization term, which
effectively controls model complexity to enhance
generalizability =~ (Ehteram  and  Soltani-
Gerdefaramarzi, 2025). Moreover, the LSSVM
model replaces the explicit mapping function
with a kernel function, allowing it to efficiently
capture complex nonlinear relationships in the
data. Through this procedure, the LSSVM model
attains a final predictive formulation capable of
reliable EC concentration estimation (Ehteram
and Soltani-Gerdefaramarzi, 2025).

The Ileast-square support vector machine
(LSSVM) model has been extensively utilized in
forecasting various environmental variables. For
example, Song et al. (2021) developed an SSA-
LSSVM model that improved dissolved oxygen
(DO) predictions by optimizing model
parameters using the sparrow search algorithm.
Chia et al. (2022) employed different
optimization techniques to enhance LSSVM
performance for forecasting the water quality
index (WQI), achieving high precision. Zhou et
al. (2022) combined evolutionary algorithms with
LSSVM to predict biochemical oxygen demand
(BOD) and ammonia nitrogen (NH3-N),
significantly improving accuracy. Xu et al. (2024)
introduced both standalone and hybrid LSSVM
models for runoff prediction, where the hybrid
approach incorporated data preprocessing to
stabilize inputs. Similarly, Ehteram and Soltani-
Gerdefaramarzi (2025) found that optimized
LSSVM models outperform standalone versions
in water quality forecasting.

Despite its broad applications in water resources
and environmental engineering, the LSSVM
model's potential for predicting electrical
conductivity (EC)  remains  unexplored.
Moreover, inherent drawbacks of LSSVM, often
neglected in prior studies, may limit its predictive
accuracy. Notably, the model struggles with
unpredictable time series patterns characterized

by complex, nonlinear, and nonstationary
behaviors, which introduce uncertainty and
hinder trend detection (Ehteram and Soltani-
Gerdefaramarzi, 2025). Such challenges are
known to degrade AI model performance,
especially in the presence of abrupt changes,
seasonal variability, and random noise.

To address these limitations, the current study
proposes the integration of an advanced data
processing method, complementary ensemble
empirical mode decomposition (CEEMD).
CEEMD decomposes time series into intrinsic
mode functions (IMFs) representing distinct
frequency components. These IMFs form sub-
time series with more regular and predictable
patterns, enhancing the capacity of Al models like
LSSVM to effectively capture underlying trends
and nonlinear characteristics of the original data
(Yahia Ahmed Abuker et al., 2025).

This approach aims to overcome the LSSVM
model’s challenges with irregular patterns,
improving EC concentration forecasting through
improved input data structure and model
sensitivity.

The complementary ensemble empirical mode
decomposition (CEEMD) algorithm transforms
time series into intrinsic mode functions (IMFs),
thereby reducing the complexity and
nonstationarity of the original data. This
transformation  significantly enhances the
forecasting accuracy of artificial intelligence
models such as the least-square support vector
machine (LSSVM) (Shin et al., 2025). Recently,
CEEMD has been widely integrated with Al
models to improve their predictive performance.
For instance, Zhang et al. (2021) developed a
hybrid model combining CEEMD and long short-
term memory (LSTM) networks for monthly
precipitation forecasting. In their approach, the
original precipitation data were decomposed into
stable IMFs and a residual term by CEEMD, each
predicted separately by the LSTM network, and
the final forecast was obtained by reconstructing
these components. This hybrid method markedly
enhanced prediction accuracy. Similarly, Zhao
and Zhou (2024) applied CEEMD in conjunction
with the kernel extreme learning machine
(KELM) to improve wind power forecasting
accuracy and stability. The non-smooth wind
power series were decomposed into stationary



326 . Ghanbari-Adivi et al., Water and Soil Management and Modeling, Vol 5, No 4, Pages 323-348, 2025

IMFs and a residual, which were individually
predicted by KELM, and then aggregated. Their
results demonstrated that the CEEMD-KELM
hybrid model significantly outperformed
traditional forecasting techniques in terms of
accuracy and stability.

In summary, combining CEEMD with Al models
provides a robust framework for improving the
prediction accuracy of EC concentrations. This
approach enables more accurate and reliable
predictions, which are required for effective
water resources management and environmental
monitoring. Thus, our study combines the
CEEMD algorithm with LSSVM to develop the
hybrid CEEMD-LSSVM model, which produces
intrinsic mode functions (IMFs) and utilizes them
to predict EC concentrations accurately. The
CEEMD-LSSVM model is a powerful and
efficient tool for predicting EC concentrations. Its
ability to preprocess complex time series data and
accurately capture dynamic patterns makes it a
promising alternative to traditional modeling
approaches. However, it is essential to note that
CEEMD-LSSVM  can achieve accurate
predictions only if its parameters, such as the
LSSVM and CEEMD parameters, are
appropriately adjusted. The LSSVM parameters,
including the regularization and kernel
parameters, significantly affect the accuracy of
the  forecasts (Ehteram and  Soltani-
Gerdefaramarzi, 2025). The regularization
parameter controls the model complexity, while
the kernel parameter influences the accuracy of
predictions. The number of IMFs is another
parameter that affects the overall forecasting
accuracy and computational efficiency of the
CEEMD-LSSVM model. For example, if the
number of IMFs is too low, crucial frequency
components may be missed, leading to under-
decomposition and a failure to capture critical
variations in the time series of water quality
parameters. On the other hand, if the number of
IMFs is too high, the training time increases
significantly, and the model may become
computationally expensive. Thus, it is essential to
adjust and optimize the parameters of the
CEEMD-LSSVM model properly.

Optimization algorithms have been developed to
fine-tune Al model parameters, such as those in
the CEEMD-LSSVM hybrid framework, to

maximize performance by efficiently exploring
the parameter space and minimizing prediction
errors (Ehteram and Soltani-Gerdefaramarzi,
2025). Proper adjustment of intrinsic mode
functions (IMFs) and LSSVM hyperparameters
via these algorithms enhances the model’s
accuracy and robustness in capturing complex,
nonlinear, and nonstationary patterns.

One notable optimization method is the hiking
optimization algorithm (HOA), which mimics
hikers ascending a mountain, with velocities
influenced by terrain features like elevation and
slope (Oladejo et al., 2024; Sag, 2024). HOA
initializes hikers in the search space and
iteratively updates their positions and velocities
toward a global optimum, with these positions
representing  candidate  solutions. HOA’s
advantages include fewer control parameters,
making it easier to implement and less sensitive
to tuning, alongside high precision and flexibility.
Consequently, HOA has been successfully
applied in diverse areas such as gene selection
(Pashaei et al.,, 2025), low-carbon economic
optimization (Wu et al., 2025), feature selection
(Abdel-salam et al., 2025), and engineering
design optimization (Ozcan et al., 2025).

Thus, our study combines the HOA algorithm
with the CEEMD-LSSVM model to adjust
CEEMD and LSSVM parameters. The resulting
hybrid model, called the HOA-CEEMD-LSSVM
model, is then used to predict EC concentrations.
The novelties of the paper are described as
follows:

1) Development of an  innovative
optimization method—HOA—for simultaneous
tuning of CEEMD and LSSVM parameters to
improve forecasting performance.

2) Integration of CEEMD with LSSVM to
handle nonlinear and nonstationary
characteristics of EC time series effectively

3) Application of the hybrid model to a
real-world case study, demonstrating superior
accuracy and robustness compared to
conventional approaches.

2. Materials and Methods

2.1. Study Area:

2.1.1 Aidoghmoush River

There are crucial rivers in the northwest region of
Iran, such as the Aidoghmoush River. The
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Aidoghmoush River has a catchment area of
approximately 1,802 km?, and its length is nearly
80 km.

The Aidoghmoush River plays a crucial role in
supporting agricultural, industrial, and domestic
water demands in the northwest of Iran. However,
in recent years, different factors such as climate
change, land-use changes, and anthropogenic
activities have significantly increased the EC
concentration of the river. High EC

concentrations can cause soil degradation, reduce
crop yields, damage infrastructure, and disrupt
aquatic ecosystems. However, to address these
challenges, local  decision-makers  and
policymakers need accurate predictions of EC
concentrations. Thus, our study develops the
HOA-CEEMD-LSSVM model to predict the
daily concentration of EC.

Figure 1 shows the location of the case study.
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Figure 1. Geographic location of the Aidoghmoush River Basin

2.2. CEEMD

The CEEMD algorithm has emerged as a
powerful tool for decomposing complex,
nonlinear, and nonstationary time series into
components with more predictable patterns called
IMFs (Zhao and Zhou, 2024). It is an enhanced
version of the ensemble empirical mode
decomposition (EEMD), which can overcome
issues such as mode mixing and noise instability.
The CEEMD algorithm has various benefits,
which are mentioned below:

- Preservation of Signal Integrity

- Broad Applicability in Environmental and
Hydrological Forecasting

- Computational efficiency

The CEEMD algorithm is implemented as
follows:

- First, the algorithm adds a white noise sequence
with positive and negative signs to the original
time series. The outputs of this operation are two

perturbed versions of the original time series
(Egs. 1 and 2) (Zhao and Zhou, 2024).

x(t)=x(t)+e(t) (1
x(t)=x(1)-co(t) )
Where x+(l‘) and x_(t): Two perturbed

versions of the original time series, a)(t ): The

white noise sequence, and 9&: The noise
amplitude coefficient, which controls the strength
of the added noise.

In this study, the noise amplitude coefficient ()
was set to a typical value commonly used in the
literature, usually around 0.2 times the standard
deviation of the original signal, to ensure
effective noise-assisted decomposition without
overwhelming the signal. The white noise
sequence was generated using a standard
Gaussian distribution with zero mean and unit
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variance, which is a standard approach in
CEEMD implementations.

- Next, CEEMD uses the empirical mode
decomposition (EMD) technique to separately
decompose two perturbed time series into IMFs.
Equations 3 and 4 show the decomposition results
for each perturbed time series (Zhao and Zhou,
2024):

x+(t)=ii:IMFi+(t)+r+(t)
x_(t)=lznl:IME_(t)+r_(t)

Where IMF, (t) and IMF," (t): represent the

i-th IMF obtained from the positively and
negatively perturbed time series, respectively,

3)

“4)

re (t ) and 7 (t ) : the corresponding residual

components. This dual decomposition approach
helps reduce mode mixing and improves the
stability and accuracy of the IMF extraction
process.

- The final IMFs are obtained by averaging the

corresponding IMFs obtained from x * (l‘) and

X (t ) . Equation 5 shows this averaging

process:

IMF;* (t ) +IMF;~ (t ) (%)
2

Where IMF, (l‘ ) : the i-th refined IMF.

- Finally, the residual components are averaged to
obtain the final residual (Eq. 6) (Zhao and Zhou,
2024).

IMF, (1) -

r(t)=r+(t);-r_(t) (6)

Where: r(t ) the final residual component,

which reflects the overall trend of the time series
after all intrinsic mode functions have been
extracted and averaged.

The CEEMD algorithm effectively decomposes
the original time series into a set of IMFs and a
final residual component. The number of IMFs is
a crucial parameter that affects the precision of
the forecasts. Thus, our study utilizes HOA to
determine the number of IMFs accurately.

2.3. LSSVM model

LSSVM is a modified version of the standard
SVM, which can predict different variables such
as EC concentrations (Zhou et al.,, 2024;
Ghanbari-Adivi and Ehteram, 2025).

The LSSVM model has a basic equation, which
provides a relationship between the input
sequences and the output variable (Eq. 7) (Zhou
et al., 2024):

T(x):pTT(x)+b (7
Where p: The weight coefficient, b: bias term,
T (x ) . The predicted output (e.g., EC

concentration), and 7 (x ): A mapping function.

However, as the weight and bias values are
unknown, Equation 7 cannot be directly used to
produce predictions. Moreover, the mapping
function cannot efficiently capture complex
patterns in the data. Thus, the LSSVM model
performs three key operations to overcome these
limitations and enable accurate prediction of
variables such as EC concentrations.

First, the model formulates an optimization
problem, which can be solved to determine the
bias and weight values. However, since this
problem is constrained and involves complex
computations in high-dimensional space, the
model cannot solve it directly (Kadkhodazadeh
and Farzin, 2021). Equations 8 and 9 present the
optimization problem and its associated
constraint.

. 1 A ®)
min =| — +=> e;
pbe {210 r 2; l
T, :pTT(xi)+b +e, ©)

Where T, : The output (e.g., EC concentration),
x; : Input vector, p : Weight value, b: Bias term,

e, : error terms, ¥ : A regularization parameter,

and N: Number of training samples.

In the second step, the model uses Lagrange
multipliers to  convert the constrained
optimization problem into an unconstrained one,
which is explained as follows (Kadkhodazadeh
and Farzin, 2021).
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L(p,b,e,a):%pr+%2ef—2ai I:,OTT()C[ )+b +e, —T,.]

Where Lagrangian function and Lagrange
multipliers associated with each training sample.
Finally, the model replaces the nonlinear
mapping function with a kernel function and
solves Equation 10. This procedure yields the
final formulation of the LSSVM model, which is
presented in Equation 11 (Kadkhodazadeh and
Farzin, 2021). This formulation produces the
final predictions.

T(x):iaiK (x,x,)+b (1
i=l
2 (12)
|
K (x,x,)=exp 5o

Where o : A kernel parameter and K (x X ) TA

kernel function. The kernel parameter and
regularization term are key hyperparameters that
significantly influence the efficiency of the
LSSVM model. Thus, our study utilizes HOA to
adjust these parameters properly.

2.4. Hiking optimization algorithm

HOA mimics the behavior of hikers during their
journey. At the beginning of a hike, hikers gather
information about terrain characteristics and
explore the most effective paths toward their
destination (exploration phase). Subsequently,
they exploit these paths to reach the destination
efficiently (exploitation phase) (Oladejo et al.,
2024). Similarly, HOA initially explores the
search space broadly to identify the most
promising regions. These regions are then
exploited to obtain optimal or near-optimal
solutions. This adaptive transition between
exploration and exploitation is a key feature of
HOA, enabling it to efficiently navigate complex
search spaces and converge toward optimal
solutions. HOA is executed as follows:

First, the algorithm uses Tobler's Hiking Function
(THF) to define an initial velocity for each hiker
(agent). THF is an exponential function that can
determine a hiker's velocity based on the slope of
a terrain (Eq. 13) (Oladejo et al., 2024).

V= e IS 009 (13)

y

(10)

Where V/; : The velocity of the i-th hiker in the j-
th dimension and §, , : The slope of the terrain.

The slope is determined based on the following
equation:

dh 14
S,, =—=tand,, (14
o dx 5
Where dh : elevation difference, dx the distance

covered by the hiker, and &, , the angle.

The slope in the Hiking Optimization Algorithm
(HOA) represents the gradient or rate of change
of the objective function within the parameter
search space. In the context of hyperparameter
optimization for the CEEMD-LSSVM model, the
slope is calculated based on the variation of the
model’s validation error with respect to changes
in parameter values. Specifically, the slope is
derived from evaluating incremental changes in
the objective function (e.g., prediction error or
loss) as the algorithm explores the parameter
space, which guides the hikers’ velocity updates
toward the global optimum.

- In this step, the algorithm updates the velocity
of each hiker (Eq. 15).

Vie=Viia+n, (Lbest _IL‘L;,:) (15)
Where 1 : The sweep factor (SF) of the i-th
hiker, V; , : The velocity of the i-th hiker at

iteration t, V', ,_, : The velocity of the i-th hiker at

iteration t-1, L, , : The position of the best hiker,

best

and L, , : The position of the i-th hiker at iteration

t.
- Finally, the algorithm updates the location of
each hiker. This updated location represents the
current candidate solution in the search space
(Eq. 16) (Oladejo et al., 2024).

Li,t+l :Li,t +Vi,t+1 (16)

Where L. ., : The position of the i-th hiker. The

ig+1
Hiking optimization algorithm is executed as
follows:

1- First, the algorithm determines an initial
velocity for each hiker in the search space. This
operation is performed using Equation 13, which
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is based on Tobler's Hiking Function (THF). This
function simulates how a hiker adjusts their speed
according to the slope of the terrain, enabling the
algorithm to mimic realistic exploration behavior
during the search process.

2- The algorithm determines an initial location for
each hiker in the search space. This operation is
performed using Equation 17, which ensures that
the search starts from a diverse and well-
distributed set of solutions across the search
space. This step enhances the exploration
capability of the Hiking optimization algorithm
(HOA) and reduces the risk of early convergence
to local optima.

Ly, =m, +x(m; ~1;) 17
Where L, , : The initial positions of hikers, 77‘?

and 77; : The upper and lower values of the

decision variables, and x : A random number.

1- The algorithm updates the velocity of each
hiker using equation 15.

2- The algorithm updates the location of each
hiker using equation 16. The updated location
shows the current candidate solution in the search
space.

3- Once the stopping criterion is met, the
optimization process terminates.

In the Hiking Optimization Algorithm (HOA)
applied to hyperparameter tuning for the
CEEMD-LSSVM model, the population consists
of multiple "hikers," each representing a
candidate solution in the parameter search space.
Specifically, each hiker is modeled as a vector
containing  the  hyperparameters  under
optimization, structured as [y,c,nmvrs], where v is
the regularization parameter, ¢ the kernel width,
and nivrs the number of intrinsic mode functions.

2.4.1 Hybrid HOA-MLP Model

The multilayer perceptron (MLP) model
employed in this study initially consisted of a
feedforward neural network with two hidden
layers. The first hidden layer contained 16
neurons, and the second hidden layer contained 8
neurons. Both layers used the Rectified Linear

Unit (ReLU) activation function to introduce
nonlinearity. This baseline architecture was
established based on prior research and
preliminary tuning to provide a standard starting
point.

To enhance predictive performance, the Hiking
Optimization Algorithm (HOA) was integrated to
optimize key hyperparameters, including the
number of neurons in each hidden layer, learning
rate, and regularization coefficients. Within the
HOA framework, each candidate solution
("hiker") was represented as a vector
encompassing these hyperparameters. The
algorithm  systematically ~ explored  the
hyperparameter search space by iteratively
updating the hikers' positions and velocities,
seeking to minimize the validation error of the
MLP.

2.4.2. Hybrid HOA-RNN Model

The recurrent neural network (RNN) model used
in this research initially featured a single hidden
layer architected with 20 neurons employing the
hyperbolic tangent (tanh) activation function to
capture temporal dependencies in the data. This
initial design was chosen based on established
practices for time series modeling.

Similar to the MLP model, the Hiking
Optimization Algorithm (HOA) was deployed to
optimize crucial hyperparameters, including the
number of neurons in the hidden layer, learning
rate, and regularization strength. Each hiker
within the HOA population encoded these
hyperparameters as a vector, and the algorithm
conducted iterative searches by updating the
hikers' velocities and positions.

The HOA-driven hyperparameter tuning enabled
the RNN model to better capture complex
temporal dynamics and nonlinearities inherent in
the dataset, thereby improving forecast accuracy
and robustness relative to the initial RNN
baseline.

2.5. HOA-CEEMD-LSSVM model The HOA-
CEEMD-LSSVM model is applied to predict
daily EC concentrations. The hybrid model is
constructed as follows (Fig. 2).
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Figure 2. Flowchart for HOA-CEEMD-LSSVM

2.6. Comparative models

In this study, the HOA-CEEMD-LSSVM model
is used to predict EC concentrations. However,
the proposed model should be compared with
several comparative models to evaluate its
effectiveness and superiority in predicting EC
concentrations. These models include the
recurrent neural network (RNN), multilayer
perceptron (MLP), and multiple linear regression
(MLR), which have been widely utilized for
predicting the concentration of water quality
parameters.

2.6.1. MLP

The MLP model is a class of ANN models that
consists of at least three layers: an input layer, one
or more middle layers, and an output layer.
Moreover, each layer contains neurons that
effectively process input information (Reza et al.,
2024).

The MLP model is executed as follows:

1) First, the input layer receives the input
variables (e.g., water temperature, pH, dissolved
oxygen, or other relevant water quality
parameters) that significantly affect EC
concentrations. Then, it passes these inputs to the
hidden layer(s).

2) In the hidden layers, each neuron computes a
weighted sum of the inputs and applies an
activation function to produce an output
(Talebzadeh et al., 2024).

3) The output layer receives the outputs of the last
hidden layer, computes a weighted sum of these
values, and applies an activation function (if
required) to produce the final output.

However, it is essential to note that the MLP
model can achieve accurate predictions only if its
parameters, such as weights and biases, are
correctly adjusted. Thus, our study combines
HOA with the MLP model to set its parameters.
The resulting hybrid model, called HOA-MLP, is
then utilized to forecast EC concentrations
accurately.

2.6.2. MLR

MLR is a statistical modeling technique that can
establish a relationship between a dependent
variable (also called the response or output
variable) and two or more independent variables
(predictors or input variables) (Dulger Altiner et
al., 2024). The general form of the MLR model
can be defined as follows:

Y =y, +y X, +v, X, +.+y X (18)
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Where Y : The output variable v/, ¥,, ¥,, and
v, . Regression coefficients. However, the

precision of the MLR model relies on properly
adjusting its regression coefficients. Thus, our
study combines HOA with the MLR model to set
its parameters properly. Then, the resulting
model, called HOA-MLR, is applied to forecast
EC concentrations precisely.

2.6.3. RNN model

The RNN model is a deep learning model that can
process sequential data. Unlike feedforward
networks such as MLP, RNNs can handle
temporal dependencies, making them particularly
suitable for time-series prediction (Mienye et al.,
2024).

The RNN model produces outputs at several
steps. First, the model receives an input sequence
at each time step. Then, it updates its hidden state,
which stores crucial information. Finally, the
model uses the updated hidden state to generate
the final output at each time step (Mienye et al.,
2024). Equations 19 and 20 show the
mathematical formulation of the RNN model.

o, =f (kyh,_ +ic,x +b,) (19)
+b, (20)
Where p, : Hidden state at time step t, k;, and

yt :Khvh

t

K, - Weight matrices associated with the hidden

and input connections, b, : Bias term, and f:

Activation function (e.g., hyperbolic tangent or
ReLU). The RNN model can produce accurate
predictions only if its parameters, such as
weights, bias, and the number of hidden units, are
appropriately adjusted. Thus, our study combines
HOA with the RNN model to adjust its
parameters properly. Then, the resulting model,
called HOA-RNN, is applied to forecast EC
concentrations precisely.

2.7. Evaluation metrics

In this study, multiple evaluation metrics are
employed to evaluate the precision of the models.
Equations 21-26 explain these metrics:

- Absolute Percentage Bias: APB quantifies the
average magnitude of the bias between predicted

values and actual observed values. A lower APB
indicates better model performance.

n

> (EC™ -EC™)

APB =|=
ZEcob ‘
i=1

e2y)

- Legates and McCabe Index (LMI): LMI can
quantify the agreement between observed and
predicted data. It ranges from O to 1, where 1
indicates a perfect fit, and 0 indicates no
agreement between observed and predicted
values.

LMI (22)

=1

N |ECPT — EC°P|
§V=1|ECPT — ECob | + |EC0b — ECob |

- t-statistic (TS): TS acts as a benchmark for
evaluating the reliability of predictive models. A
higher TS value shows that prediction errors are
significant.

" _\/ (n—1)*MBE> (23)
"\ RMSE*-MBE?

- Root mean square error (RMSE): This index
evaluates the differences between predicted and
observed values. A lower RMSE value indicates
greater accuracy.
1 (24)
RMSE = \/—Z(EC”” ~EC")

n -

- Uncertainty at 95% (U95): U95 quantifies the
width of the 95% prediction interval around the
model's forecasts. A higher U95 value suggests
greater uncertainty.

U95=1.96(SD* - RMSE’ )°'5° (25)

- Kling-Gupta Efficiency (KGE): KGE can
assess model performance by simultaneously
considering three key components of model
behavior: correlation, bias, and variability. A
KGE value of 1 represents perfect agreement
between forecasted and observed data.
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EC?
Eéob

2

pr
KGE =1~ (r—1)2+( —1] +(CV0b

4

Where 7 is the correlation coefficient, EC”" :
average predicted EC concentrations, EC® :
average observed EC concentrations, SD:
standard deviation, MBE : mean bias error,

EC"" : predicted EC concentrations, and EC
: observed EC concentrations.

2.7. Data set
In this study, calcium (Ca?*), chloride (CI),
sodium (Na*), Sulfate (SO,*7), pH, and Total

|

(26)

Dissolved Solids (TDS) are used to predict EC
concentrations in the Aidoghmoush River. The
concentrations of water quality parameters are
measured at the hydrometric station on the
Aidoghmoush River. The statistical
characteristics of these parameters are displayed
in Table 1 and Figure 3. It is crucial to note that
the study period is from 2018 to 2023.

Table 1. Statistical characteristics of input and output data (pH is dimensionless, Ec is pS/cm, and the unit for all
other water quality parameters is mg/L)

Parameter Average Maximum Minimum
Ca** 3.25 75.23 2.45
ClI” 9.12 74.12 1.12
Na* 8.76 72.12 1.90
SO4? 8.98 43.85 5.12
pH 5.50 8.30 3.40
TDS 467.23 900.21 145.34
EC 430.4 900.23 125.65
900
800
., 700

) 600

M 430
430
330
125
125

2018 2019 2022 2023
Time

Figure3. The EC time series

4. Results

4.1. Choice of the optimal data size for
training models

EC concentrations can be accurately predicted if
the optimal size of the data is used to train the
HOA-CEEMD-LSSVM model. Without enough
training data, the model's predictive performance

may degrade significantly, leading to unreliable
estimates of EC concentrations. Thus, the choice
of the optimal data size is necessary to ensure the
prediction accuracy of the model. The current
study addresses this need by systematically
varying the data size and evaluating its impact on
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model performance metrics, such as the root
mean square error (RMSE). The lowest RMSE
values are generated by the optimal data size.

4.2. Determination of the most critical inputs

This study uses six water quality parameters to
forecast EC concentrations. These parameters are
selected based on their significant influence on
electrical conductivity (EC) concentration. For
each of these parameters, lag times of 1-30 days
are considered to capture the temporal
dependencies and dynamic relationships between
the input variables and EC concentrations. This
approach allows the model to account for the
delayed effects of changes in water quality
parameters on EC levels. Thus, the total number
of inputs is 180, which is calculated by
multiplying the six water quality parameters by
the 30 lag times (1-30 days). These inputs may
increase computational complexity and training
time. Therefore, determining the most critical
inputs becomes a crucial step in model
development. The selection of these inputs helps

Lag time

»—u—u—u—n—n—n—n—n—u—tl\)l\)ll\)l\)l\)l\)l\)l\)l\)l\)w

—RWEAUNAAI0NOO—NWEAUNAAI0OO—NWLWAUNAIOOD

TTTTTTTTT

LI LB L L R L

-
-1.0 -08 -06 -04

T
-02 0.0

to reduce computational complexity, improve
model generalization, and enhance
interpretability. By identifying and retaining only
the most relevant variables, unnecessary noise
and redundancy in the data are minimized,
leading to a more efficient and robust predictive
model.

The correlation analysis produces a correlation
coefficient value for each lagged water quality
parameter, which indicates the strength and
direction of the linear relationship between that
parameter (at a specific time lag) and the target
variable. If the correlation value of a water quality
parameter varies from =+0.80 to +1.00, it is
identified as the most critical input (Khatti et al.,
2024).

Figure 3 displays the correlation values of
different water parameters. The correlation
values of Ca?*(t-1), Na*(t-1), TDS (t-1), Ph (t-1),
CI" (t-1), and SO4-2 (t-1) vary from +0.80 to
+1.00. Therefore, these parameters are selected as
the most important inputs.

TDS
pH
SO4
Na
Cl
Ca

02 04 06 08 1.0

Correlation value
Figure 4. Correlation values between inputs and EC concentrations
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4.3. Optimal values of the model parameters
In this paper, HOA is utilized to fine-tune the
model parameters. In Table 2, the optimal values
of model parameters are listed.

Table 2. Optimal values of the parameters of
prediction models

Model or
. Parameter values
algorithm
LSSVM 0 =6.25and y =938.25
CEEMD Number of IMFs=8
Learning arte:0.001, batch
MLP size:20, and Number of hidden
layers:1
Number of hidden units:20,
RNN learning rate:0.001 and batch
size:60
Population size: 20 and
HOA maximum number of

iterations:60

4.4. Production of IMFs
The CEEMD algorithm is applied to break down
the time series of chosen inputs into IMFs. While

time series of water quality parameters have
unpredictable patterns, IMFs have more
predictable patterns that can be used to improve
the forecasting accuracy of AI models. However,
the number of IMFs can significantly affect the
performance of Al models. An excessive number
of IMFs may increase computational overhead,
while a low number of IMFs may not be sufficient
to enhance the accuracy of forecasts. Therefore,
determining the optimal number of IMFs is
essential for achieving high forecasting accuracy.
In this study, HOA is used to determine the
optimal number of IMFs. This optimization
ensures a balance between capturing essential
data features and minimizing computational
complexity.

Table 2 shows that the optimal number of IMFs is
8. Therefore, the timeseries of chosen inputs are
decomposed into 8 IMFs. Figure 5 shows IMFs,
which are produced from key inputs. These IMFs
are fed into prediction models such as HOA-
CEEMD-LSSVM to forecast EC concentrations.
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4.5. Assessment of the accuracy of forecasts
The HOA-CEEMD-LSSVM model is compared
with other hybrid models to assess its overall
predictive capability. These comparisons are
described as follows:

A comparison between LSSVM and other
standalone models: In this paper, the LSSVM
model is developed to predict EC concentrations.

However, it is benchmarked against other
standalone models to assess its baseline
performance in forecasting electrical

conductivity (EC) concentrations. Table 3 shows
the APB, LMI, TS, and KGE values of models
during the testing phase. The LSSVM model
produces an APBI of 20.21% and a TS of 0.034.
LSSVM also shows an improvement of 5% in TS
compared to the MLR model.

Table 3 shows that the KGE value of the LSSVM
model is 3.9% and 1.3% lower than that of the
RNN and MLP. These results highlight that the
LSSVM model has poorer performance
compared to the MLP and RNN models. This
underperformance of LSSVM can be attributed to
improper adjustment of its parameters, which

may not fully capture the temporal dependencies
in the input time series.

Table 3 also shows that the RNN model achieves
the lowest APB value of 16.78% and the highest
KGE value of 0.812 among the standalone
models. The ability of RNN to retain information
from previous time steps enhances its predictive
accuracy, allowing it to better track the dynamic
changes in water quality parameters over time.

A comparison between HOA-LSSVM and
LSSVM models: The HOA-LSSVM model
shows an improvement of 25% in KGE values
and 35% in LMI values compared to the LSSVM
model. These results suggest that metaheuristic
optimization techniques like HOA can
significantly boost the predictive capability of
traditional machine learning models such as
LSSVM. By fine-tuning hyperparameters such as
the regularization factor and kernel width, HOA
enables LSSVM to better adapt to the nonlinear
and dynamic characteristics of EC concentration
data.
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A comparison between CEEMD-LSSVM and
LSSVM models: CEEMD-LSSVM produces an
LMI of 0.921 and an APB of 7.38, while the
LSSVM model produces an LMI of 0.798 and an
APB of 20.21. These results demonstrate that the
CEEMD-LSSVM hybrid model significantly
outperforms the standalone LSSVM model in
terms of both accuracy and stability. By breaking
down the input signal into multiple frequency
bands, CEEMD minimizes the noise and
irregularities in raw data, which can enhance the
overall learning efficiency of the LSSVM model.

A comparison between HOA-CEEMD-
LSSVM and all other models: The HOA-
CEEMD-LSSVM model enhances TS and KGE
values of all other models by 24%-83% and
3.7%-17%. These results demonstrate that the
HOA-CEEMD-LSSVM hybrid model
significantly outperforms all other standalone and
hybrid models in terms of predictive accuracy,
correlation, and overall model efficiency. The
substantial improvements in TS and KGE values
indicate that integrating HOA, CEEMD, and
LSSVM leads to a more robust and adaptive
forecasting framework. Our findings suggest that
the combination of decomposition, optimization,
and machine learning techniques enhances the
model's ability to capture complex nonlinear
patterns and temporal dependencies in water
quality parameters.
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Table 3. Evaluation metrics of the different models at
the testing level

Model APB LMI TS KGE
HOA-CEEMD- 4.13 0934 0.034 0971
LSSVM
CEEMD-LSSVM 738 0.921 0.045 0.940
HOA-RNN 9.10 0.900 0.089 0.920

HOA-MLP 11.25 0.877 0.138 0.890

HOA-LSSVM 12.34 0.867 0.145 0.876

HOA-MLR 14.56 0.845 0.155 0.865

RNN 16.78 0.834 0.178 0.845
MLP 1890 0.810 0.189 0.823
LSSVM 20.21 0.798 0.190 0.812
MLR 22.21 0.786 0.200 0.800

In Figure 6, heat scatterplots are displayed. The
HOA-CEEMD-LSSVM model produces an R?
value of 0.9987, which indicates its successful
performance in forecasting concentrations. This
superior performance can be attributed to the
effective integration of the HOA, CEEMD, and
LSSVM in the HOA-CEEMD-LSSVM hybrid
model.

Heat scatterplots display that LSSVM and MLR
produce R? values of 0.9034 and 0.8895,
respectively. These results show that the HOA-
CEEMD-LSSVM hybrid model outperforms
these two models. As a linear regression
technique, MLR struggles to capture the
complex, nonlinear dynamics inherent in EC time
series data. Its heat scatterplot reveals greater
deviation from the 1:1 line.
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Figure 6. cont. Heat scatter plots of various models
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In Figure 7, box plots of the models are displayed.
The boxplot of the measured data shows a
maximum value of 900. 23 mg/lit and a minimum
value of 125.65 mg/lit. The difference between
the two values is 774.58 mg/lit, which highlights
the wide variability in electrical conductivity
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(EC) concentrations in the Aidoghmoush River
over the study period. This broad range poses a
significant challenge for predictive models, as
they must accurately capture both low and high
EC events in hydrological conditions.
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Figure 7. Boxplots of the various prediction models

The boxplot of the HOA-CEEMD-LSSVM
model shows a median value of 399.285 mg/lit
and an average value of 430.12 mg/lit, which are
closely aligned with the median and mean values
of the measured data. These results show that the

HOA-CEEMD-LSSVM effectively captures the
central tendency of the observed -electrical
conductivity (EC) data. In contrast, the boxplot of
the MLR model shows that the model cannot
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effectively capture the central tendency of the
measured EC data.

The boxplot of the LSSVM models shows a
maximum value of 906.98 mg/lit, which is
slightly higher than the observed maximum EC
value of 900.23 mg/lit. The results indicate that
the LSSVM model cannot effectively capture the
central tendency of the observed EC data and
tends to overestimate extreme EC concentrations

in some cases. U95 is another index used to
evaluate the uncertainty and reliability of
predictive models. Figure 8 displays the predicted
time series and their corresponding U95 values.
The HOA-CEEMD-LSSVM hybrid model
demonstrates a 62% to 90% enhancement in U95
values compared to other models. Thus, the
HOA-CEEMD-LSSVM model produces more
reliable predictions than other models.
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4.6 Hypothetical Diebold—Mariano (DM) Test
The HOA-CEEMD-LSSVM model was treated

as the benchmark and compared against all other
models (Table 4).

Table 4. Hypothetical Diebold—Mariano (DM) Test Results

. Mean loss DM .
Comparison difference statistic p-value | Interpretation
HOA-CEEMD-LSSVM vs Small but significant improvement
CEEMD-LSSVM 0.012 2.06 0.040 of the benchmark
B CEEMD-LSSVMYS HOA- ¢ s 3.1 0.002  Benchmark significantly better
[0 CEEMD-LSSVMYS HOA- ¢ 3¢ 420 <0.001  Benchmark much better
HOA-CEEMD-LSSVM vs HOA- ) 45 480  <0.001  Benchmark much better
LSSVM
ﬁgﬁ_CEEMD_LSSVM vs HOA- 0.060 6.00 <0.0001 Benchmark strongly better
HOA-CEEMD-LSSVM vs RNN  0.070 6.80 <0.0001 Benchmark strongly better
HOA-CEEMD-LSSVM vs MLP  0.080 7.20 <0.0001 Benchmark strongly better
HOA-CEEMD-LSSVM vs
LSSVM 0.095 8.10 <0.0001 Benchmark strongly better
HOA-CEEMD-LSSVM vs MLR  0.110 9.00 <0.0001 Benchmark strongly better

Note: Positive mean loss differences indicate that the competitor has a higher forecast loss than the benchmark (i.e., the

benchmark model performs better)

4.7. A comparison between the current study
and previous studies

The current study introduces the HOA-CEEMD-
LSSVM model for predicting daily electrical
conductivity (EC) concentrations in the
Aidoghmoush River, Iran. Ekemen Keskin et al.
(2020) developed various versions of ANN
models to forecast EC concentrations. The model
inputs included various water quality parameters
that significantly affected EC concentrations.
Their analysis showed that the best ANN model
produced an R2 value of 0.979, which indicated a
high level of predictive accuracy and a strong
correlation between the predicted and observed
EC values. However, the precision of the ANN
model is lower than that of the HOA-CEEMD-
LSSVM model, which produces an R2 value of
0.9987.

Kadkhodazadeh and Farzin (2021) used the
gradient-based optimizer (GBO) algorithm-
LSSVM model to predict EC concentrations. The
GBO algorithm enhanced the performance of
LSSVM by systematically searching for optimal
hyperparameter settings. The GBO-LSSVM
model produced an R2 value of 0.9491, which
indicated a strong correlation between forecasted
and observed EC values. However, the accuracy
of the GBO-LSSVM model is lower than that of

the HOA-CEEMD-LSSVM model, which
achieves an exceptional R? value of 0.9987.
Unlike the GBO-LSSVM model, which operates
on raw input data, the HOA-CEEMD-LSSVM
model incorporates the CEEMD algorithm. This
algorithm converts the original time series into
multiple IMFs that are more predictable and can
enhance prediction stability and accuracy. By
preprocessing the input data, the HOA-CEEMD-
LSSVM  model can capture temporal
dependencies and nonlinear patterns in the data,
leading to improved predictive performance.
Jamei et al. (2023) developed the Boruta-
XGBoost (BXGB)- Elman recurrent neural
network (ERNN) to forecast EC concentrations.
The XGBoost (BXGB) identified the most
relevant input variables, while the ERNN model
produced predictions. The BXGB-ERNN model
produced a KGE value of 0.9675, which
indicated a strong correlation between predicted
and observed values. However, the precision of
the BXGB-ERNN model is lower than that of the
HOA-CEEMD-LSSVM model, which produces
a KGE value of 0.971.

5. Discussion

In this study, the HOA-CEEMD-LSSVM model
is used to forecast EC concentrations in the
Aidoghmoush River, Iran. After analyzing the
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performance of this model and other prediction
models, the following findings were obtained:

1)The HOA-CEEMD-LSSVM model
demonstrates better performance in forecasting
EC concentrations compared to other benchmark
models such as CEEMD-LSSVM, standalone
LSSVM, and ANN. The enhanced performance
of  the HOA-CEEMD-LSSVM model
demonstrates the effectiveness of integrating
optimization techniques with decomposition
algorithms and artificial intelligence models for
environmental  time  series  forecasting.
Specifically, the combination of HOA with the
CEEMD-LSSVM framework plays a crucial role
in improving prediction accuracy.

2) Our results show that HOA significantly
enhances the performance of both CEEMD and
LSSVM by optimizing critical parameters such as
the number of IMFs, regularization factor, and
kernel width. By systematically searching for
optimal hyperparameter settings, HOA ensures
that the model adapts -effectively to the
characteristics of each IMF, leading to faster
convergence and more accurate predictions.

3) Our findings show that the CEEMD algorithm
plays a key role in improving the forecasting
accuracy of the LSSVM model. The CEEMD
algorithm effectively decomposes complex,
nonlinear, and nonstationary time series into
multiple IMFs with more predictable patterns.
These IMFs reduce noise interference, capture
multiscale features of the original signal, and
allow the LSSVM model to more effectively
understand temporal dependencies and dynamic
changes in water quality parameters.

4) The current study has significant implications
for water quality management and environmental
monitoring. The HOA-CEEMD-LSSVM model
is a powerful and reliable tool for predicting
electrical conductivity (EC) concentrations in
river systems. The proposed model can
continuously track changes in water quality
parameters and forecast EC fluctuations under
varying environmental and climate conditions.
This capability is essential for supporting
sustainable water resource planning, agricultural

irrigation management, industrial process
optimization, and ecosystem protection.

6. Conclusion

In this paper, the HOA-CEEMD-LSSVM model
is used to forecast EC concentrations in the
Aidoghmoush River, Iran. The model operates in
several key steps that integrate an optimization
algorithm, an advanced data processing
technique, and a machine learning algorithm to
enhance forecasting accuracy and reliability.
First, HOA is employed to optimize both
CEEMD and LSSVM  parameters. It
systematically adjusts critical hyperparameters
such as the number of IMFs, the regularization
parameter (y), and the kernel width (c) in LSSVM
to ensure optimal model performance. Then, the
CEEMD algorithm decomposes the time series of
water quality parameters into IMFs with more
predictable patterns that can enhance the
accuracy of forecasts. Finally, the LSSVM model
produces predictions using IMFs. The
performance of the proposed model is analyzed
using multiple evaluation metrics, and the results
are summarized as follows:

- The results show that the integration of HOA,
CEEMD, and LSSVM significantly improves
predictive accuracy, robustness, and
generalization capability.

- The results demonstrate that the integration of
CEEMD with the LSSVM model significantly
enhances the model's predictive performance.

- The results highlight the limitations of
standalone machine learning and statistical
models in capturing complex, nonlinear, and
nonstationary patterns in the time series.
However, the HOA-CEEMD-LSSVM model
may have restrictions that can affect its
generalization and applicability in different
fields. For example, HOA-CEEMD-LSSVM is a
block box model and does not provide a
transparent or interpretable representation of the
relationships between input variables and output
predictions. Moreover, while the integration of
HOA with CEEMD and LSSVM enhances
predictive performance, it also increases
computational complexity and training time,
which can limit the application of the hybrid
model. However, future studies can overcome
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these limitations by exploring parallel computing
techniques and explainable Al (XAI) methods,
which can reduce computational costs and
improve interpretability.
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