Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., & Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review.
Chemosphere,
99, 19-33.
doi:10.1016/j.chemosphere.2013.10.071
Baldock, J.A., & Smemik, R.J. (2002). Chemical composition and bioavailability of thermally altered Pinusresinosa (Red pine) wood.
Organic Geochemistry,
33(9), 1093-1109.
doi:10.1016/S01466380(02)00062-1
Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar.
Environmental Pollution,
159, 474–480.
doi:10.1016/j.envpol.2010.10.016
Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., & Ro, K.S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar.
Bioresource Technology,
107, 419-428.
doi:10.1016/j.biortech.2011.11.084
Carter, S., Shackley, S., Sohi, S., Suy, T.B., & Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis).
Agronomy Journal,
3(2), 404-418.
doi:10.3390/agronomy3020404
Chausali, N., Saxena, J., & Prasad, R. (2021). Nanobiochar and biochar based nanocomposites: Advances and applications.
Journal of Agriculture and Food Research,
5, 100191.
doi:10.1016/j.jafr.2021.100191
Chen, H., Xie, A., & You, S. (2018). A review: Advances on absorption of heavy metals in the waste water by biochar. In: IOP Conference Series, Materials Science and Engineering. IOP Publishing.
doi:10.1088/1757-899X/301/1/012160
Chen, X., Zhou, B., Wang, Q., Tao, W., & Lin, H. (2019). Nano-biochar reduced soil erosion and nitrate loss in sloping fields on the Loess Plateau of China.
Catena,
187, 104346.
doi:10.1016/j.catena.2019.104346
Cimo, G., Kucerik, J., Berns, A.E., Schaumann, G.E., Alonzo, G., & Conte, P. (2014). Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure.
Journal of Agricultural and Food Chemistry,
62(8), 1912-1918.
doi:10.1021/jf405549z
Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., & He, Z. (2016). Potential mechanisms of cadmium removal from aqueous solution by
Canna indica derived biochar.
Science of the Total Environment,
562, 517-525.
doi:10.1016/j.scitotenv.2016.03.248
Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2015). Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.
Science of the Total Environment,
539, 566–575.
doi:10.1016/j.scitotenv.2015.09.022
Diatta, J., Andrzejewska, A., & Rafałowicz, T. (2019). Reactivity, exchangeability, and solubility of Cu, Zn, and Cd in various soil materials: concepts and evaluation.
Eurasian Soil Science,
52, 853–864.
doi:10.1134/S1064229319070032
Elaigwu, S.E., Rocher, V., Kyriakou, G., & Greenway, G.M. (2014). Removal of Pb
2+ and Cd
2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis africana shell.
Journal of Industrial and Engineering Chemistry,
5, 3467-3473.
doi:10.1016/j.jiec.2013.12.036
EPA. (2003). Environmental Protection Agency. Washington, DC.
Fan, Z., Zhang, Q., Li, M., Sang, W., Qiu, Y., Wei, X., & Hao, H. (2020). Removal behavior and mechanisms of Cd (II) by a novel MnS loaded functional biochar: Influence of oxygenation.
Journal of Cleaner Production,
256, 120672.
doi:10.1016/j.jclepro.2020.120672
Farrokhian Firouzi, A., Biria, M., Moezzi, A., & Rahnama, A. (2024). Effect of Conocarpus biochar on some physical and mechanical properties of calcareous soil under corn cultivation. Water and Soil Management and Modelling, 4(3), 19-38. doi:10.22098/mmws.2023.12233.1217 [In Persian]
Feng, Q., Lin, Q., Gong, F., Sugita, S., & Shoya, M. (2004). Adsorption of lead and mercury by rice husk ash.
Journal of Colloid and Interface Science,
278, 1-8.
doi:10.1016/j.jcis.2004.05.030
Gholami, L., Rahimi, G., & Khademi Jolgeh Nezhad, A. (2020). Effect of thiourea-modified biochar on adsorption and fractionation of cadmium and lead in contaminated acidic soil.
International Journal of Phytoremediation,
22(5), 468-481.
doi:10.1080/15226514.2019.1678108
Hamzenejad Taghlidabad, R., Sepehr, E., Khodaverdiloo, H., Samadi, A., & Rasouli-Sadaghiani, M.H. (2020). Characterization of cadmium adsorption on two cost-effective biochars for water treatment.
Arabian Journal of Geosciences, 13, 448.
doi:10.1007/s12517-020-05477-6
Jiang, M., He, L., Niazi, N.K., Wang, H., Gustave, W., Vithanage, M., Geng, K., Shang, H., Zhang, X., & Wang, Z. (2023). Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities.
Biochar,
5(2), 1-21.
doi:10.1007/s42773-022-00201-x
Kah, M., Sigmund, G., Xiao, F., & Hofmann, T. (2017). Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.
Water Research,
124, 673-692.
doi:10.1016/j.watres.2017.07.070
Kermannezhad, J., Torabipoodeh, H., Ghanbariadivi, E., & Shahinejad, B. (2024). Chlorine removal from agricultural wastewater using sugarcane bagasse magnetic nano biochar. Water and Soil Management and Modelling, 4(2), 189-210. doi:10.22098/mmws.2023.12425.1240. [In Persian]
Krishnan, A.K., & Haridas, A. (2008). Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith.
Journal of Hazardous Materials,
152, 527-535.
doi:10.1016/j.jhazmat.2007.07.015
Kumar, N., Fosso-Kankeu, E., & Ray, S.S. (2019). Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of pb (ii) from aquatic systems.
ACS Applied Materials & Interfaces,
11(21), 19141-19155.
doi:10.1021/acsami.9b03853
Lawrinenko, M., Jing, D., Banik, C. & Laird, D.A. (2017). Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity.
Carbon,
118, 422-430.
doi:10.1016/j.carbon.2017.03.056
Liang, B., Lehmann, J., Sohi, S.P., Thies, J.E., O’Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E.G., & Luizão, F.J. (2010). Black carbon affects the cycling of non-black carbon in soil.
Organic Geochemistry,
41(2), 206–13.
doi:10.1016/j.orggeochem.2009.09.007
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J.O., Thies, J., Luizao, F.J., Petersen, J., & Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils.
Soil Science Society of America Journal,
70(5), 1719-1730.
doi:10.2136/sssaj2005.0383
Lyu, H., Gao, B., He, F., Zimmerman, A.R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms.
Environmental Pollution,
233, 54–63.
doi:10.1016/j.envpol.2017.10.037
Manahan, S.E. (2002). Toxicological chemistry and biochemistry. 3rd Edition: CRC Press, Limited Liability Company (LLC).
Mench, M., Lepp, N., Bert, V., Schwitzguébel, J.P., Gawronski, S.W., Schöder, P., & Vangronsveld, J. (2010). Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859.
Journal of Soils and Sediments,
10, 1039–1070.
doi:10.1007/s11368-010-0190-x
Mohan, D., Sarswat, A., Ok, Y.S., & Pittman Jr, C.U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review.
Bioresource Technology,
160, 191-202.
doi:10.1016/j.biortech.2014.01.120
Moradi, N., & Karimi, A. (2020). Effect of corn stover-modified biochar on some biological properties of a Cd-contaminated calcareous soil.
Journal of Soil Management and Sustainable Production, 9(4), 127-144. doi:
10.22069/ejsms.2020.16591.1888. [In Persian]
Moradi, N., Moezzi, A., Khajavi-Shojaei, S., & Khaji, P. (2022). Cadmium immobilization in contaminated soil by nano-biohar and Fe-modified nano-biochar.
Iranian Journal of Soil and Water Research,
53(4), 795-808.
doi:10.22059/ijswr.2022.337907.669193. [In Persian]
Mouni, L., Belkhiri, L., Bouzaza, A., & Bollinger, J. (2016). Chemical associations and sorption capacity of Pb and Zn: column experiments on a polluted soil from the Amizour mining district (Algreia).
Environmental Earth Sciences,
75, 96-103.
doi:10.1007/s12665-015-4854-0
Naghdi, M., Taheran, M., Brar, S.K., Kermanshahi-pour, A., Verma, M., & Surampalli, R.Y. (2017a). Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine.
Science of the Total Environment,
584-585, 393–401.
doi:10.1016/j.scitotenv.2017.01.021
Naghdi, M., Taheran, M., Brar, S.K., Rouissi, T., Verma, M., Surampalli, R.Y., & Valero, J.R. (2017b). A green method for production of nanobiochar by ball milling-optimization and characterization.
Journal of Cleaner Production,
164, 1394–1405.
doi:10.1016/j.jclepro.2017.07.084
Pratap, T., Chaubey, A.K., Patel, M., Mlsna, T.E., Pittman Jr, C.U., & Mohan, D. (2022). Nanobiochar for aqueous contaminant removal. Pp. 667–704, In: Mohan D, Pittman CU and Mlsna TE (eds), Sustainable Biochar for Water and Wastewater Treatment, Elsevier, Amsterdam. doi:10.1016/B978-0-12-8222256.00021-X.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., & Lehmann, J. (2011). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil.
Biology and Fertility of Soils, 48(3), 271-284.
doi:10.1007/s00374-011-0624-7
Ramezanzadeh, H., Reyhanitabar, A., Oustan, S., Mohammadi, M.H., & van der Zee, S.E.A.T.M. (2021). Enhanced sorption of cadmium by using biochar nanoparticles from ball milling in a sandy soil.
Eurasian Soil Science,
54, 201–211.
doi:10.1134/s1064229321020125
Rashid, M.I., Shah, G.A., Sadiq, M., Amin, N.u., Ali, A.M., Ondrasek, G., & Shahzad, K. (2023). Nanobiochar and copper oxide nanoparticles mixture synergistically increases soil nutrient availability and improves wheat production.
Plants, 12, 1312.
doi:10.3390/plants12061312
Rizhiya, E.Y., Buchkina, N.P., Mukhina, I.M., Belinets, A.S., & Balashov, E.V. (2015). Effect of biochar on the properties of loamy sand spodosol soil samples with different fertility levels: a laboratory experiment.
Eurasian Soil Science,
48, 192–200.
doi:10.1134/S1064229314120084
Shen, X., Huang, D., Zhu, H., Wang, Sh., Xu, Ch., He, Y., Luo, Z., & Zhu, Q. (2016). Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil.
Journal of Environmental Management,
168, 245-251.
doi:10.1016/j.jenvman.2015.12.019
Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar: a guide to analytical methods. Csiro Publishing, 320 pages.
Sun, Y., Lyu, H., Cheng, Z., Wang, Y., & Tang, J. (2022). Insight into the mechanisms of ball-milled biochar addition on soil tetracycline degradation enhancement: Physicochemical properties and microbial community structure.
Chemosphere,
291, 132691.
doi:10.1016/j.chemosphere.2021.132691
Uchimiya, M., Klasson, K.T., Wartelle, L.H., & Lima, I.M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. copper sorption isotherms and the release of cations.
Chemosphere, 82(10), 1431–1437.
doi:10.1016/j.chemosphere.2010.11.050.
Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., & Al-Wabel, M.I. (2016). Chemically modified biochar produced from conocarpus waste increases NO
3 removals from aqueous solutions.
Environmental Geochemistry and Health,
38(2), 511-521.
doi:10.1007/s10653-015-9736-6.
Vishnu, D., Dhandapani, B., Vaishnavi, G., & Preethi, V. (2022). Synthesis of tri-metallic surface engineered nanobiochar from cynodon dactylon residues in a single step-batch and column studies for the removal of copper and lead ions.
Chemosphere,
286, 131572.
doi:10.1016/j.chemosphere.2021.131572.
Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H.H., Guo, W., Liu, C., Chen, L., & Xing, B. (2015). Investigating the mechanisms of biochar’s removal of lead from solution.
Bioresource Technology, 177, 308–317.
doi:10.1016/j.biortech.2014.11.077.
Weber, J., & Karczewska, A. (2004). Biogeochemical processes and the role of heavy metals in the soil environment.
Chemical Engineering Journal,
247, 283-290.
doi:10.1016/j.geoderma.2004.01.001.
Xiao, Q., Zhu, L.X., Zhang, H.P., Li, X.Y., Shen, Y.F., & Li, S.Q. (2016). Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth.
Crop & Pasture Science,
67, 495–507.
doi:10.1071/CP15351.
Xu, X., Zhao, Y., Sima, J., Zhao, L., Masek, O., & Cao, X. (2017). Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review.
Bioresource Technology,
241, 887–899.
doi:10.1016/j.biortech.2017.06.023.
Yin, D., Wang, X., Chen, C., Peng, B., Tan, Ch., & Li, H. (2016). Varying effect of biochar on cd, pb and As mobility in a multi-metal contaminated paddy soil.
Chemosphere,
152, 196-206.
doi:10.1016/j.chemosphere.2016.01.044.
Yue, L., Lian, F., Han, Y., Bao, Q., Wang, Z., & Xing, B. (2019). The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk.
Science of the Total Environment,
656, 9–18.
doi:10.1016/j.scitotenv.2018.11.364.
Zameni, L., Sadeghzadeh, F., Jalili, B., & Bahmanyar, M. A. (2024). Adsorption of nitrate from aqueous solution by biochar and Fe–coated biochar. Water and Soil Management and Modelling, 4(1), 70-84. doi:10.22098/mmws.2023.12082.1203 [In Persian]
Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal.
Bioresource Technology,
130, 457-462.
doi:10.1016/j.biortech.2012.11.132.
Zhang, C., Clark, G.J., Patti, A.F., Bolan, N., Cheng, M., Sale, P.W., & Tang, C. (2015a). Contrasting effects of organic amendments on phytoextraction of heavy metals in a contaminated sediment.
Plant and Soil,
397(1-2), 331-345.
doi:10.1007/s11104-015-2615-1
Zhang, J., Liu, J., & Liu, R. (2015b). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate.
Bioresource Technology,
176, 288-291.
doi:10.1016/j.biortech.2014.11.011.
Zhang, H., Shao, J., Zhang, S., Zhang, X., & Chen, H. (2020). Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil.
Journal of Hazardous Materials, 390, 121349.
doi:10.1016/j.jhazmat.2019.121349.
Zhang, P., Xue, B., Jiao, L., Meng, X., Zhang, L., Li, B., & Sun, H. (2022a). Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd- and Pb-contaminated alkaline soil.
Science of the Total Environment,
813, 152648.
doi:10.1016/j.scitotenv.2021.152648.
Zhang, X., Wells, M., Niazi, N., Bolan, N., Shaheeng, S., Hou, D., Gao, B., Wang, H., Rinklebe, J., & Wang, Z. (2022b). Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils.
Environmental Pollution, 299, 118810.
doi:10.1016/j.envpol.2022.118810.
Zheng, B.X., Ding, K., Yang, X.R., Wadaan, M.A.M., Hozzein, W.N., Peñuelas, J., & Zhu, Y.G. (2019). Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake.
Science of the Total Environment,
647, 1113–1120.
doi:10.1016/j.scitotenv.2018.07.454