Identification of Flash Flood-Prone Areas in Arid and Semi-arid Regions Using Optical and Radar Imagery (Case Study: Semnan Province)

Document Type : Research/Original/Regular Article

Authors

1 Postdoctoral Researcher, Department of Combatting Desertification, Faculty of Desert Studies, Semnan University, Researcher in Soil Conservation and Watershed Management Research Institute (SCWMRI), Tehran, Iran

2 Associate Professor, Department of Combatting Desertification, Faculty of Desert Studies, Semnan University, Semnan, Iran

10.22098/mmws.2025.17843.1628

Abstract

Extended Abstract

Introduction

Flash floods are among the most destructive natural disasters, causing substantial financial and human losses worldwide each year. These phenomena primarily occur in arid and semi-arid regions and have exhibited increased frequency and intensity in recent years due to climate change and intensified human activities. The application of satellite data and imagery within advanced analytical platforms such as Google Earth Engine provides precise, near-real-time information and robust cloud computing capabilities for rapidly processing large datasets. Sentinel satellite imagery represents one of the most advanced sources of Earth observation data available. Despite the effectiveness of radar imagery, accurately distinguishing between water and sandy areas in arid regions remains challenging due to the similar backscatter signatures of these surfaces in radar wavelengths. This research aims to identify flood-prone areas in Semnan Province, located within Iran's central desert basin, using Sentinel-1, -2, and -3 imagery combined with multiple images processing techniques, including composite analysis, NDWI (Normalized Difference Water Index), automated thresholding, and band differencing, to determine the optimal approach for delineating flood zones in arid mountainous environments.



Materials and Methods

This study focuses on identifying and evaluating flood-affected areas following the flash flood events recorded in May 2021, using an integrated remote sensing and hydrological analysis framework. The approach was initiated with the acquisition of Sentinel-1, Sentinel-2, and Sentinel-3 satellite imagery, which facilitated the high-precision delineation of flood-prone zones. A suite of image processing techniques was subsequently applied, including Automatic Thresholding using OTSU’s method to optimize pixel classification by maximizing inter-class variance within intensity histograms. To further enhance water body detection, the Normalized Difference Water Index (NDWI) was employed, leveraging the reflectance contrast between green (560 nm) and near-infrared (842 nm) bands. Additionally, spectral band composite techniques were utilized—particularly combinations such as RGB, NIR-SWIR-Red—to improve the differentiation of land surface features including vegetation, soil moisture, water bodies, and mineralogical attributes. Complementary to the remote sensing analysis, ground-based precipitation and peak instantaneous discharge data from hydrometric stations were extracted and analyzed for validation purposes. The flood mapping results were then compared with an existing flood susceptibility map generated through machine learning models, enabling an assessment of spatial accuracy. Finally, the effectiveness of each method was evaluated to identify the most suitable approach for mapping flood extents in arid and semi-arid mountainous regions.



Results and Discussion

Utilizing multi-sensor satellite imagery from Sentinel-1, Sentinel-2, and Sentinel-3, this study delineated flood-affected areas within Semnan Province with high spatial and temporal precision. Sentinel-1, operating with C-band microwave radar in VH polarization, proved particularly effective for flood mapping under persistent cloud cover. Through band differencing and thresholding techniques, this sensor enabled the identification of approximately 431,835 hectares of inundated land, primarily concentrated in the northern, central, and southern parts of the province. In parallel, Sentinel-2 optical imagery, processed through rigorous cloud masking and NDWI analysis, detected around 268,000 hectares of flooding, predominantly located within depressions and low-lying terrain. Although Sentinel-3, equipped with advanced multispectral sensors such as SLSTR and OLCI, offered extensive spatial coverage—encompassing an estimated 1,005,045 hectares—its lower spatial resolution (300 m) and heightened sensitivity to clouds and atmospheric interference limited its ability to capture smaller, discrete flood patches. To enhance delineation accuracy, automated OTSU thresholding was applied to the Sentinel-1 dataset, which improved boundary detection and reduced classification noise, resulting in a refined flood estimate of approximately 467,379 hectares. Validation against hydrometric station data revealed that over 60% of flash flood events recorded during the 2020–2021 hydrological year occurred in May 2021, showing strong temporal alignment with satellite-derived flood extents. Moreover, spatial comparison with flood susceptibility maps generated from machine learning models demonstrated substantial overlap in high-risk zones, reinforcing the reliability of the remote sensing-based mapping approach. Collectively, these findings underscore the complementary strengths and inherent limitations of both radar and optical sensors in capturing flood dynamics across arid and topographically complex regions. The integration of multi-source satellite data with advanced image processing techniques significantly enhances the accuracy and credibility of flash flood detection, thereby contributing valuable insights for disaster risk mitigation in data-scarce environments.





Conclusion

Exacerbated extreme events such as flash floods, driven by climate variability and human activities, pose serious hazards in arid and semi-arid regions where complex environmental, climatic, and geological conditions—combined with low infiltration capacities and limited historical data—complicate hydrological assessments. In dry mountainous zones, the prevalence of gypsum and limestone soils further reduces permeability, accelerating surface runoff and intensifying flood risks. This study demonstrated that advanced cloud computing platforms such as Google Earth Engine, integrated with multispectral and radar data from Sentinel satellites, provide accurate, rapid, and cost-effective means for identifying flood-prone areas in data-scarce environments. Among the evaluated techniques, automated Otsu thresholding applied to Sentinel-1 imagery proved the most effective for delineating flood extents, yielding refined estimates of approximately 467379 hectares.



Keywords: Sentinel; Image Processing; NDWI; OTSU; Semnan

Keywords

Main Subjects


منابع
فرجی، عبدالله و رحیمی، نفیسه. (1403). پایش خطر سیل خرداد 1402 استان زنجان با استفاده از تصاویر سنتینل-1. سنجش از دور و GIS ایران، doi: 10.48308/gisj.2024.234929.1210
کیانی مجد، مهناز، نهتانی، محمد، دهمرده قلعه‌نو، محمدرضا، و شیخ زهرا. (1402). شبیه‌سازی رواناب حوضه‌های آبخیز مناطق خشک در مقیاس ماهانه با استفاده از مدل SWAT (مطالعه موردی: حوضه آبخیز لار). مدیریت حوزه آبخیز، ۱۴ (۲۷) :۱۴۵-۱۳۵. doi:10.61186/jwmr.14.27.135
مسواری، محدثه و شاه حسینی، رضا. (1403). شناسایی و قطعه‌بندی مناطق متاثر از سیلاب به کمک تصاویر ماهواره‌ای و روش‌های یادگیری عمیق. مهندسی آبیاری و آب ایران، 14(3): 342-357. doi: 10.22125/iwe.2023.398951.1721
میرزایی، شهناز، سعدالدین، امیر، بهره‌مند، عبدالرضا، اونق، مجید، و مصطفی‌زاده، رئوف. (1404). هزینه‌های مستقیم-ملموس در پهنه‌های سیلابی شبیه‌سازی شده با مدل هیدرولیکی دو بعدی HEC-RAS رودخانة ارازکوسه استان گلستان. مدلسازی و مدیریت آب و خاک، 5(1): 57-74. doi:10.22098/MMWS.2024.14501.1410
 
 
References
Carreño Conde, F., & De Mata Muñoz, M. (2019). Flood monitoring based on the study of Sentinel-1 SAR images: The Ebro River case study. Water, 11(12), 2454. doi: 10.3390/w11122454
Ezzine, A., Darragi, F., Rajhi, H., & Ghatassi, A. (2018). Evaluation of Sentinel-1 data for flood mapping in the upstream of Sidi Salem dam (Northern Tunisia). Arabian Journal of Geosciences, 11(8), 170. doi:10.1007/s12517-018-3505-7
Faraji, A. & Rahimi, N. (2024). Flood risk Monitoring of June 1402 in Zanjan province using Sentinel-1 images. Iranian Journal of Remote Sensing and GIS. doi: 10.48308/gisj.2024.234929.1210 [In Persian]
Garg, S., Dasgupta, A., Motagh, M., Martinis, S., & Selvakumaran, S. (2024). Unlocking the full potential of Sentinel-1 for flood detection in arid regions. Remote Sensing of Environment, 315, 114417. doi: 10.1016/j.rse.2024.114417
Ghoneim, E., & Foody, G. M. (2013). Assessing flash flood hazard in an arid mountainous region. Arabian Journal of Geosciences, 6, 1191–1202. doi: 10.1007/s12517-011-0411-7
Halder, T., Chakraborty, D., Pal, R., Sarkar, S., Mukhopadhyay, S., Roy, N., & Karforma, S. (2024). A hybrid approach for water body identification from satellite images using NDWI mapping and histogram of gradients. Innovations in Systems and Software Engineering, 1–10. doi: 10.1007/s11334-021-00414-6
Henry, J. B., Chastanet, P., Fellah, K., & Desnos, Y. L. (2006). Envisat multi‐polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27(10), 1921-1929. doi:10.1080/01431160500486724
Huang, M., & Jin, S. (2022). Backscatter characteristics analysis for flood mapping using multi-temporal Sentinel-1 images. Remote Sensing, 14(15), 3838. doi:10.3390/rs14153838
Jahangir, E., Faryadras, F., & Derakhshan, H. (2025). Detection of Flood Affected Areas Using Radar and Optical Images in the January 2020 Flood in Chabahar City. Quarterly Scientific Journal of Rescue and Relief, 17(3), 138-142.
Jiang, W., Ni, Y., Pang, Z., He, G., Fu, J., Lu, J., ... & Lei, T. (2020). A new index for identifying water body from Sentinel-2 satellite remote sensing imagery. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 33–38. doi: 10.5194/isprs-annals-V-3-2020-33-2020
Kiyani, M. M., Nohtani, M., Dehmardeh, G. N. M. R., & Shikh, Z. (2023). Simulating the runoff of watersheds in dry areas on a monthly scale using the SWAT model (Case study: Lar Watershed). Journal of watershed Management Research, 135-145. doi: 10.61186/jwmr.14.27.135 [In Persian]
Li, W., Li, D., & Fang, Z. N. (2023). Intercomparison of automated near-real-time flood mapping algorithms using satellite data and DEM-based methods: A case study of 2022 Madagascar flood. Hydrology, 10(1), 17. doi: 10.3390/hydrology10010017
Lian, T., Xin, X., Peng, Z., Li, F., Zhang, H., Yu, S., & Liu, H. (2022). Estimating evapotranspiration over heterogeneous surface with Sentinel-2 and Sentinel-3 data: A case study in Heihe River Basin. Remote Sensing, 14(6), 1349. doi: 10.3390/rs14061349
Liao, P. S., Chen, T. S., & Chung, P. C. (2001). A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 17(5), 713–727. doi: 10.6688/JISE.2001.17.5.1
Ma, C., Li, X., & McCabe, M. F. (2020). Retrieval of high-resolution soil moisture through combination of Sentinel-1 and Sentinel-2 data. Remote Sensing, 12(14), 2303. doi: 10.3390/rs12142303
Mahmoud, S. H., & Gan, T. Y. (2018). Multi-criteria approach to develop flood susceptibility maps in arid regions of Middle East. Journal of Cleaner Production, 196, 216–229. doi: 10.1016/j.jclepro.2018.06.047
Martinis, S., Plank, S., & Ćwik, K. (2018). The use of Sentinel-1 time-series data to improve flood monitoring in arid areas. Remote Sensing, 10(4), 583. doi: 10.3390/rs10040583
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. doi:10.1080/01431169608948714
Mehmood, H., Conway, C., & Perera, D. (2021). Mapping of flood areas using Landsat with Google Earth Engine cloud platform. Atmosphere, 12(7), 866. doi: 10.3390/atmos12070866
Mesvari, M. & Shah-Hoseini, R. (2024). Detection and segmentation of flood-affected areas using satellite images and deep learning methods. Irrigation and Water Engineering, 14(3), 342-357. doi: 10.22125/iwe.2023.398951.1721 [In Persian]
Mirzaei, Sh., Sadoddin, A., Bahremand, A., Ownegh, M., & Mostafazadeh, R. (2025). Direct-tangible costs in flood zones simulated using the HEC-RAS 2-D hydraulic model – the Arazkuseh River, Golestan Province, Water and Soil Management and Modeling, 5(1), 57-74. doi:10.22098/MMWS.2024.14501.1410 [In Persian]
OTSU, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.
Panahi, M., Rahmati, O., Kalantari, Z., Darabi, H., Rezaie, F., Moghaddam, D. D., ... & Lee, S. (2022). Large-scale dynamic flood monitoring in an arid-zone floodplain using SAR data and hybrid machine-learning models. Journal of Hydrology, 611, 128001. doi: 10.1016/j.jhydrol.2022.128001
Petropoulos, G. P., Georgiadi, A., & Kalogeropoulos, K. (2024). Leveraging Sentinel-2 and Geographical Information Systems in Mapping Flooded Regions around the Sesia River, Piedmont, Italy. GeoHazards, 5(2), 485-503. doi:10.3390/geohazards5020025
Richards, J. A., & Jia, X. (2006). Remote sensing digital image analysis: An introduction (4th ed.). Springer.
Santecchia, G. S., Revollo Sarmiento, G. N., Genchi, S. A., Vitale, A. J., & Delrieux, C. A. (2023). Assessment of Landsat-8 and Sentinel-2 Water Indices: A Case Study in the Southwest of the Buenos Aires Province (Argentina). Journal of imaging, 9(9), 186. doi:10.3390/jimaging9090186
Sheikh, Z., Nia, A. M., & Ganjali, M. (2024). Climate change and anthropogenic effects on the drying of a saline lake in an arid region (Namak Lake, Iran). Theoretical and Applied Climatology, 155, 715–734. doi: 10.1007/s00704-023-04622-x
Sheikh, Z., Yazdani, M. R., & Moghaddam Nia, A. (2020). Spatiotemporal changes of 7-day low flow in Iran’s Namak Lake Basin: Impacts of climatic and human factors. Theoretical and Applied Climatology, 139(1), 57–73. doi: 10.1007/s00704-018-02501-1
Sheikh, Z., Zolfaghari, A. A., Raeesi, M., & others. (2025). Enhancing flash flood susceptibility modeling in arid regions: Integrating digital soil mapping and machine learning algorithms. Environmental Earth Sciences, 84, 170. doi: 10.1007/s12665-025-12140-4
Singh, S., & Kansal, M. L. (2022). Chamoli flash-flood mapping and evaluation with a supervised classifier and NDWI thresholding using Sentinel-2 optical data in Google earth engine. Earth Science Informatics, 15(2), 1073-1086. doi: 10.1007/s12145-021-00651-4
Tan, J., Tang, Y., Liu, B., Zhao, G., Mu, Y., Sun, M., & Wang, B. (2023). A self-adaptive thresholding approach for automatic water extraction using Sentinel-1 SAR imagery based on OTSU algorithm and distance block. Remote Sensing, 15(10), 2690. doi: 10.3390/rs15102690
Tarpanelli, A., Mondini, A. C., & Camici, S. (2022). Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe. Natural Hazards and Earth System Sciences, 22(8), 2473-2489. doi:10.5194/nhess-22-2473-2022
Tran, K. H., Menenti, M., & Jia, L. (2022). Surface water mapping and flood monitoring in the Mekong Delta using sentinel-1 SAR time series and Otsu threshold. Remote Sensing, 14(22), 5721. doi:10.3390/rs14225721
Wang, X., Ling, F., Yao, H., Liu, Y., & Xu, S. (2019). Unsupervised Sub-Pixel Water Body Mapping with Sentinel-3 OLCI Image. Remote Sensing, 11(3). 327. doi: 10.3390/rs11030327
Yang, X., Li, Y., Wei, Y., Chen, Z., & Xie, P. (2020). Water body extraction from sentinel-3 image with multiscale spatiotemporal super-resolution mapping. Water, 12(9), 2605. doi: 10.3390/w12092605
Yilmaz, O. S., Gulgen, F., Balik Sanli, F., & Ates, A. M. (2023). The performance analysis of different water indices and algorithms using Sentinel-2 and Landsat-8 images in determining water surface: Demirkopru dam case study. Arabian Journal for Science and Engineering, 48(6), 7883–7903. doi: 10.1007/s13369-022-07583-x
Zhang, M., Chen, F., Liang, D., Tian, B., & Yang, A. (2020). Use of Sentinel-1 GRD SAR images to delineate flood extent in Pakistan. Sustainability, 12(14), 5784. doi: 10.3390/su12145784