Meteorological drought monitoring based on SPI and mRAI indices in the Urmia Lake basin

Document Type : Research/Original/Regular Article

Authors

1 Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia, Iran

2 Department of Range and Watershed Management, Faculty of Natural Resources Urmia University

Abstract

Extended Abstract



Introduction

Drought, a pervasive meteorological phenomenon, is driven by insufficient precipitation and linked to climatic factors. Its escalating frequency challenges natural resource management, water security, and mitigation efforts. This complex hazard is categorized into four types: meteorological, agricultural, hydrological, and socio-economic. Accurate drought monitoring relies on robust indicators, such as the Standardized Precipitation Index (SPI) and the modified Rainfall Anomaly Index (mRAI), both of which are precipitation-dependent. Acquiring reliable, spatially representative rainfall series remains a global challenge. The Global Precipitation Climatology Centre (GPCC) global dataset provides a crucial, quality-controlled, rain-gauge-based resource that addresses this data scarcity. Given Iran's limited and unevenly distributed rain gauge stations, global datasets like GPCC are indispensable. Previous research has confirmed the efficacy of the GPCC data in conjunction with the SPI and mRAI indices for comprehensive spatial and temporal drought analysis. Building on this, this research generates high-resolution drought severity maps for the Urmia Lake basin across multiple timescales using GPCC monthly precipitation data and both SPI and mRAI indices. This provides an essential tool for proactive drought monitoring in this ecologically sensitive, water-stressed region. The Urmia Lake basin, a vital ecological and economic area, has faced severe and prolonged drought, resulting in a dramatic decline in lake levels, increased dust storms, and significant socio-economic challenges. The urgent need for accurate and timely drought monitoring is thus highlighted. Effective monitoring is essential for developing sustainable water management strategies and mitigating adverse impacts on this vulnerable ecosystem. This research directly addresses this critical need by providing a substantial approach for informed management.



Materials and Methods

Drought analysis for the Urmia Lake Basin utilized monthly precipitation data from synoptic stations and the global GPCC dataset. The accuracy of GPCC data in estimating monthly precipitation at the studied synoptic stations was rigorously evaluated using R², RMSE, MAE, and PBIAS over the 1991–2020 period. Subsequently, raster maps of monthly precipitation for the Urmia Lake Basin were prepared using GPCC data for the same period. Drought severity maps of the Urmia Lake basin were then produced based on SPI and mRAI indices at 1-, 3-, 6-, 9-, and 12-month time scales, using GPCC precipitation data from 1991 to 2020. A comparative analysis identified critically vulnerable areas across drought severity classes (weak, moderate, severe, and very severe). Furthermore, the agreement between SPI and mRAI severity classes at different time scales was quantitatively assessed using the Kappa statistic and Cramer's V coefficient.



Results and Discussion

Evaluation results conclusively demonstrated the acceptable accuracy of GPCC data in estimating monthly precipitation at all studied synoptic stations (R² = 0.91, RMSE = 10.83). Analysis of the 30 years revealed consistently the highest average monthly rainfall in the western, southwestern, and southern regions of the basin across all investigated time scales. A direct comparison of drought index values at the Urmia and Tabriz stations revealed strong concordance between the SPI and mRAI indices at time scales of 3, 6, 9, and 12 months. Quantitatively, Kappa and Cramer's V coefficient values at these time scales across all stations were notably high: 0.851 and 0.837 (3 months), 0.863 and 0.847 (6 months), 0.867 and 0.850 (9 months), and 0.929 and 0.912 (12 months), respectively. These robust statistical measures confirm a significant relationship between the SPI and mRAI drought indices for assessing drought conditions at both individual and collective stations across varying time scales. Importantly, SPI-3 and mRAI-3 indices identified moderate drought affecting most areas of the Urmia Lake Basin in October 1995, 2001, and 2002; from October to December 2010; and in October and November 2019. Furthermore, based on SPI-6 and mRAI6 indices, the entire Urmia Lake basin experienced mild to severe drought, with extreme drought in localized regions, from October to November of the mentioned years (excluding December 2002).



Conclusion

The accuracy of GPCC data for monthly precipitation estimation at Urmia Lake Basin synoptic stations is confirmed. This validates GPCC as a foundational dataset for calculating SPI and mRAI drought indices at 3-, 6-, 9-, and 12-month time scales, enabling detailed delineation of drought severity zones across the basin (1991–2020). A critical finding is the consistent strong agreement between SPI and mRAI indices across different time scales, demonstrated by index value comparisons. High Kappa and Cramer's V coefficients further substantiate this correlation in drought class identification. Essentially, the spatial distribution of drought severity, as measured by both SPI and mRAI (at 3, 6, 9, and 12-month scales), shows a compelling agreement throughout the 1991–2020 period. Despite the utility of the GPCC data, potential estimation errors from synoptic stations necessitate rigorous calibration using advanced methods, such as linear and quantile regression. Given GPCC's 0.25-degree spatial resolution, future research should downscale this dataset, e.g., via geographically weighted regression, to identify finer-resolution drought zones, which is crucial for localized water resource management and planning in the Urmia Lake basin.

Keywords

Main Subjects


منابع
حلبیان، امیرحسین، و قاسمی‌سیانی، علی (1400). بررسی روند مکانی و زمانی بارش در حوضه خزر با استفاده از داده‌های مرکز اقلیم‌شناسی بارش جهان. مهندسی و مدیریت آبخیز، 13(2): 294-283. doi: 10.22092/ijwmse.2020.125399.1610
صادقیان آقکندی، مرضیه، رضایی، حسین، خلیلی، کیوان، و احمدی، فرشاد (1402). کاربرد داده‌های شبکه‌ای CRU و GPCC در تحلیل خشک‌سالی‌های بلند مدت حوضه آبریز دریاچه ارومیه. پژوهش‌های حفاظت آب و خاک، 30(3): 125-107. doi: 10.22069/jwsc.2024.21431.3654
منتصری، مجید، امیرعطایی، بابک، و خلیلی، کیوان (1395). تحلیل روند تغییرات زمانی و مکانی دوره‎های خشک‌سالی و ترسالی شمال غرب کشور بر اساس دو شاخص خشک‌سالی SPI و RAI. آب و خاک، 30(2): 671-655. doi: 10.22067/jsw.v30i2.39679
نویدی نساج، بهزاد، ظهرابی، نرگس، نیکبخت شهبازی، علیرضا، و فتحیان، حسین (1400). ارزیابی داده‌های بارش شبکه‌بندی جهانی در پایش خشک‌سالی (مطالعه موردی: حوضه‌ی آبریز کارون بزرگ). حفاظت منابع آب و خاک، 10(3): 79-96.
 
References
Araghi A, & Adamowski, J. (2024). Assessment of 30 gridded precipitation datasets over different climates on a country scale. Earth Science Informatics 17, 1301-1313. doi: 10.1007/s12145-023-01215-0
Basheer, M., & Elagib, N. A. (2019). Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmospheric Research, 215, 128-140. doi: 10.1016/j.atmosres.2018.08.028.
Bashirian, F., Rahimi, D., Movahedi, S., & Zakerinejad, R. (2020). Water level instability analysis of Urmia Lake Basin in the northwest of Iran. Arabian Journal of Geosciences, 13, 1-14. doi: 10.1007/s12517-020-5207-1.
Bayissa, Y., Tadesse, T., Demisse, G., & Shiferaw, A. (2017). Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sensing, 9(7), 669. doi: 10.3390/rs9070669.
Bhalme, H. N., & Mooley, D. A. (1980). Large-scale droughts/floods and monsoon circulation. Monthly Weather Review, 108, 1197-1211. doi: 10.1175/1520-0493(1980)108<1197:LSDAMC>2.0.CO;2.
Chen, L., Brun, P., Buri, P., Fatichi, S., Gessler, A., McCarthy, M. J., Pellicciotti, F., Stocker, B., & Karger, D. N. (2025). Global increase in the occurrence and impact of multiyear droughts. Science, 387(6731), 278-284. doi: 10.1126/science.ado4245.
Ekpetere, K. O. (2025). Development and evaluation of the modified and standardized rainfall anomaly indices for extreme variability analysis. Journal of Environmental Management, 375, 124160. doi: 10.1016/j.jenvman.2025.124160.
Fluixá-Sanmartín, J., Pan, D., Fischer, L., Orlowsky, B., García-Hernández, J., Jordan, F., Haemmig, Ch., Zhang, F., & Xu, J. (2018). Searching for the optimal drought index and timescale combination to detect drought: A case study from the lower Jinsha River basin, China. Hydrology and Earth System Sciences, 22(1), 889-910. doi: 10.5194/hess-22-889-2018.
Javan, K., Azizzadeh, M. R., & Yousefi, S. (2016). An Investigation and assessment of meteorological drought in Lake Urmia Basin using drought indices and probabilistic methods. Natural Environment Change, 2(2), 153-164.
Halabian, A., & Ghasemi Siani, A. (2021). Analysis of the spatial and temporal trend in precipitation on Caspian basin using GPCC data. Watershed Engineering and Management, 13(2), 283-294. doi: 10.22092/ijwmse.2020.125399.1610. [In Persian]
Hänsel, S., Schucknecht, A., & Matschullat, J. (2016). The Modified Rainfall Anomaly Index (mRAI)—is this an alternative to the Standardized Precipitation Index (SPI) in evaluating future extreme precipitation characteristics?. Theoretical and Applied Climatology, 123, 827-844. doi: 10.1007/s00704-015-1389-y.
Heydari Tasheh Kabood, S., Hosseini, S. A., & Heydari Tasheh Kabood, A. (2020). Investigating the effects of climate change on stream flows of Urmia Lake basin in Iran. Modeling Earth Systems and Environment, 6, 329-339. doi: 10.1007/s40808-019-00681-0.
Karavitis, C. A., Alexandris, S., Tsesmelis, D. E., & Athanasopoulos, G. (2011). Application of the standardized precipitation index (SPI) in Greece. Water, 3(3), 787-805. doi: 10.3390/w3030787.
Kazempour Choursi, S., Erfanian, M., Abghari, H., Miryaghoubzadeh, M., & Javan, K. (2024). Enhancing drought monitoring through spatial downscaling: A geographically weighted regression approach using TRMM 3B43 precipitation in the Urmia Lake Basin. Earth Science Informatics, 17, 1-26. doi: 10.1007/s12145-024-01324-4.
Keyantash, J., & Dracup, J. A. (2002). The quantification of drought: an evaluation of drought indices. Bulletin of the American Meteorological Society, 83(8), 1167-1180. doi: 10.1175/1520-0477-83.8.1167.
Lu, J., Jia, L., Menenti, M., Yan, Y., Zheng, C., & Zhou, J. (2018). Performance of the standardized precipitation index based on the TMPA and CMORPH precipitation products for drought monitoring in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1387-1396. doi: 10.1109/JSTARS.2018.2810163.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to timescales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
Manzano, A., Clemente, M. A., Morata, A., Luna, M. Y., Beguería, S., Vicente-Serrano, S. M., & Martín, M. L. (2019). Analysis of the atmospheric circulation pattern effects over SPEI drought index in Spain. Atmospheric Research, 230, 104630. doi: 10.1016/j.atmosres.2019.104630.
Mishra, A. K., & Desai, V. R. (2005). Spatial and temporal drought analysis in the Kansabati river basin, India. International Journal of River Basin Management, 3(1), 31-41. doi: 10.1080/15715124.2005.9635243.
Montaseri, M., Amirataee, B., & Khalili, K. (2016). Identification of trend in spatial and temporal dry and wet periods in northwest of Iran based on SPI and RAI indices. Water and Soil, 30(2), 655-671. doi: 10.22067/jsw.v30i2.39679. [In Persian]
Navidi, N. B., Zohrabi, N., Nikbakht, S. A., & Fathian, H. (2021). Evaluation of global gridded precipitation datasets for drought monitoring (case study: great Karoon watershed). Journal of Water and Soil Resources Conservation, 10(3), 79-96. [In Persian]
Mpelasoka, F., Hennessy, K., Jones, R., & Bates, B. (2008). Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(10), 1283-1292. doi: 10.1002/joc.1649.
Palmer, W. C. (1965). Meteorological drought. US Department of Commerce, Weather Bureau.
Patel, N. R., Chopra, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 14(4), 329-336. doi: 10.1002/met.33.
Raziei, T. (2021). Revisiting the rainfall anomaly index to serve as a simplified standardized precipitation index. Journal of Hydrology, 602, 126761. doi: 10.1016/j.jhydrol.2021.126761.
Raziei, T., Bordi, I., & Pereira, L. S. (2011). An application of GPCC and NCEP/NCAR datasets for drought variability analysis in Iran. Water Resources Management, 25, 1075-1086. doi: 10.1007/s11269-010-9657-1.
Sadeghian Aghkandi, M., Rezaie, H., Khalili, K., & Ahmadi, F. (2023). Using of CRU and GPCC data base in the analysis of long-term droughts in the Urmia Lake basin. Journal of Water and Soil Conservation, 30(3), 107-125. doi: 10.22069/jwsc.2024.21431.3654. [In Persian]
Saemian, P., Hosseini-Moghari, S. M., Fatehi, I., Shoarinezhad, V., Modiri, E., Tourian, M. J., Tang, Q., Nowak, W., Bárdossy, A., & Sneeuw, N. (2021). Comprehensive evaluation of precipitation datasets over Iran. Journal of Hydrology, 603, 127054. doi: 10.1016/j.jhydrol.2021.127054.
Schneider U, Hänsel, S, Finger, P, Rustemeier, E, & Ziese, M. (2022). GPCC full data monthly product version 2022 at 0.25°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst (DWD). doi: 10.5676/DWD_GPCC/FD_M_V2022_025.
Shirmohammadi, B., Malekian, A., Salajegheh, A., Taheri, B., Azarnivand, H., Malek, Z., & Verburg, P. H. (2020). Scenario analysis for integrated water resources management under future land use change in the Urmia Lake region, Iran. Land Use Policy, 90, 104299. doi: 10.1016/j.landusepol.2019.104299.
Spinoni, J., Naumann, G., Vogt, J., & Barbosa, P. (2015). European drought climatologies and trends based on a multi-indicator approach. Global and Planetary Change, 127, 50-57. doi: 10.1016/j.gloplacha.2015.01.012.
Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Van Loon, A. F., & Stahl, K. (2016). Response to comment on 'candidate distributions for climatological drought indices (SPI and SPEI)'. International Journal of Climatology, 36(4). doi: 10.1002/joc.4564.
Sutapa, I. W., Arafat, Y., Lipu, S., & Rustiati, N. B. (2024). A comparative study of SPI, PCI, PCD, and RAI methods for estimating drought in the Palu River Basin, Indonesia. In IOP Conference Series: Earth and Environmental Science, 1311(1), 1-15 IOP Publishing. doi: 10.1088/1755-1315/1311/1/012056.
Tang, G., Ma, Y., Long, D., Zhong, L., & Hong, Y. (2016). Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology, 533, 152-167. doi: 10.1016/j.jhydrol.2015.12.008.
Van-Rooy, M. (1965). A Rainfall Anomaly Index (RAI), independent of the time and space. Notos, 14: 43-48.
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696-1718. doi: 10.1175/2009JCLI2909.1.
Wang, W., Ertsen, M. W., Svoboda, M. D., & Hafeez, M. (2016). Propagation of drought: from meteorological drought to agricultural and hydrological drought. Advances in Meteorology, 2016. doi: 10.1155/2016/6547209.
Wei, L., Jiang, S., Ren, L., Yuan, F., & Zhang, L. (2019). Performance of two long-term satellite-based and GPCC 8.0 precipitation products for drought monitoring over the Yellow River Basin in China. Sustainability, 11(18), 4969. doi: 10.3390/su11184969.
Xiang, Y., Chen, J., Li, L., Peng, T., & Yin, Z. (2021). Evaluation of eight global precipitation datasets in hydrological modeling. Remote Sensing, 13(14), 2831. doi: 10.3390/rs1314283.
Xiong, H., Han, J., & Yang, Y. (2025). Propagation from meteorological to hydrological drought: characteristics and influencing factors. Water Resources Research, 61(4), e2024WR037765. doi: 10.1029/2024WR037765
Zhong, R., Chen, X., Lai, C., Wang, Z., Lian, Y., Yu, H., & Wu, X. (2019). Drought monitoring utility of satellite-based precipitation products across mainland China. Journal of Hydrology, 568, 343-359. doi: 10.1016/j.jhydrol.2018.10.072.