Assessing the Impact of Global Meteorological signals on Drought occurrence in Iran

Document Type : Special issue on "Climate Change and Effects on Water and Soil"

Authors

1 Dept. of Natural Resources Engineering, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas, Iran

2 Dept. of Watershed Management, Natural Resources Faculty, University of Birjand, Birjand, Iran

3 Ph.D. in Watershed Management Science and Engineering, University of Hormozgan, Bandar Abbas, Iran

Abstract

This study investigated the complex interplay between global meteorological signals—specifically the Southern Oscillation Index (SOI) and the North Atlantic Oscillation (NAO)—and drought occurrence in Iran. Utilizing the Standardized Precipitation Index (SPI), a widely recognized metric for characterizing drought conditions, the research analyzed rainfall data from 79 synoptic stations across Iran, spanning a three-decade period from 1988 to 2017. The primary objective was to provide a detailed understanding of the spatial and temporal patterns of drought variability nationwide and to elucidate the varying degrees of correlation between these global climatic drivers and regional drought dynamics.

The analysis revealed intricate spatiotemporal drought patterns across Iran. Generally, the country experienced mild to moderate droughts, with a notable exception: the Lake Urmia basin, which exhibited relatively wetter conditions throughout the study period. Conversely, the Central Plateau and Eastern Border regions emerged as particularly vulnerable to drought, a vulnerability that was acutely observed during the 1998-2007 period. A deeper dive into the data, using minimum SPI analysis, suggested a country-wide susceptibility to drought. However, the mean SPI analysis highlighted the eastern border region as being consistently affected, while milder drought conditions were observed in the Central Plateau and Qarah-Qom regions.

The study employed composite indices of SPI coupled with SOI and NAO, revealing distinct regional patterns of drought severity and sensitivity to these global climate signals. The SPI-SOI index indicated that the Caspian Sea sub-basin experienced the least severe drought, whereas the Qaraqum sub-basin suffered the most. Similarly, the SPI-NAO index showed the Lake Urmia sub-basin with the lowest drought severity and the Eastern Border sub-basin with the highest. These regional differences underscore the varied ways in which different parts of Iran respond to large-scale atmospheric forcing. Periodic indices for each decade further emphasized these regional and temporal variations, consistently showing higher drought severity in the Eastern Border and Qaraqum sub-basins, particularly during the 1998-2007 and 2008-2017 periods, which experienced more intense drought compared to 1988-1997.

Temporal variations in drought severity were a key finding, highlighting the dynamic nature of drought and the imperative for continuous monitoring. The study identified a general trend of shifting drought patterns across the three decades. Initially (1988-1997), mild droughts were prevalent, with the Central Plateau experiencing the most severe conditions. This was followed by a significant intensification of drought (1998-2007), impacting the entire country, with the Central Plateau once again being the most affected. Subsequently, a decrease in severity was observed (2008-2017), leading to a return to mild drought conditions in most regions. This observed shift aligns with findings from other studies in the Mediterranean region, which also reported an increase in drought periods during the late 1990s and early 2000s, consistent with work by Hoerling et al. (2012) and Spinoni et al. (2015). The study period notably encompasses two of the most extensive and devastating droughts in the Mediterranean basin over the past 40 years (1999-2001 and 2007-2012), as referenced by Mathbout et al. (2021). The extended observational period to the end of 2017 in this study, while maintaining overall consistent trends, allowed for a more comprehensive temporal analysis.

The analysis of mean SPI changes further reinforced the trend of increasing drought, particularly in the eastern border region. During the second and third decades (1998-2007 and 2008-2017), this region experienced significant drought, with the Central Plateau and Qaraqum also showing signs of mild drought. This eastward expansion of drought raises considerable concerns regarding long-term water security in Iran. Conversely, the earlier period (1988-1997) saw only mild drought in the Eastern Iranian border basin, with other regions experiencing near-normal to slightly wet conditions, suggesting a potential influence of climate change on regional drought patterns. The results, revealing a decrease in SPI values during winter, wet months, and on an annual scale, and an increase in SPI values during summer, confirm a tendency towards decreasing winter and annual precipitation and increasing summer precipitation identified in several regions of Iran (Caloiero and Veltri, 2019).

Regarding the specific influence of global meteorological signals, the Southern Oscillation Index (SOI), which reflects the El Niño-Southern Oscillation (ENSO), was found to significantly exacerbate drought conditions, particularly in southern and southeastern Iran. The North Atlantic Oscillation (NAO), however, exhibited a more complex and regionally varying influence, with a less pronounced overall impact. These findings underscore the importance of understanding the individual and combined effects of these climate signals for accurate drought prediction and mitigation. The study's results corroborate previous research in the Mediterranean area, which often acknowledges the NAO as a primary driver of drought periods in the region (e.g., Vicente-Serrano et al., 2011). Strong positive phases of the NAO are typically associated with below-normal temperatures and precipitation in the study area, while negative phases are linked to opposite patterns (Caloiero et al., 2011). The observed dry conditions at the beginning of this century, corresponding to a positive phase of the NAO, further support this link. While ENSO's influence on the Calabria region's rainfall has been noted as weak in prior studies (Caloiero et al., 2011), its significant role as a drought driver in other regions like Turkey and China is recognized. Beyond SOI and NAO, the study also revealed a strong influence of the Mediterranean Oscillation (MO), consistent with findings from Mathbout et al. (2021).

Keywords

Main Subjects


References
Abdelkader, M., & Yerdelen, C. (2022). Hydrological drought variability and its teleconnections with climate indices. Journal of hydrology, 605, 127290.doi: 10.1016/j.jhydrol.2021.127290
Abdelkader, M., & Yerdelen, C. (2022). Hydrological drought variability and its teleconnections with climate indices. Journal of hydrology, 605, 127290. doi: 10.1016/j.jhydrol.2021.127290
Abhilash, S., Krishnakumar, E. K., Vijaykumar, P., Sahai, A. K., Chakrapani, B., & Gopinath, G. (2019). Changing characteristics of droughts over Kerala, India: inter-annual variability and trend. Asia-Pacific Journal of Atmospheric Sciences, 55(1), 1-17. doi:10.1007/s13143-018-0060-9.
AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A., Anjileli, H., Azarderakhsh, M., Chiang, F., Hassanzadeh, E. and Huning, L.S. (2021). Anthropogenic drought: Definition, chal- lenges, and opportunities. Reviews of Geophysics, 59(2). doi: 10.1029/2019rg000683
Apurv, T., Sivapalan, M., & Cai, X. (2017). Understanding the role of climate characteristics in drought propagation. Water Resources Research, 53(11), 9304–9329. doi: 10.1002/2017wr021445
Brasil Neto, R.M., Santos, C.A.G., Nascimento, T.V.M., Silva, R.M., Santos, C.A.C. (2020). Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: a statistical analysis. Remote Sensing, 12(14), 2184. doi: 10.3390/rs12142184
Brasil Neto, R.M., Santos, C.A.G., Silva, J.F.C.B.d.C., Silva, R.M., Santos, C.A.C., Mishra, M. (2021). Evaluation of the TRMM product for monitoring drought over Paraíba State, northeastern Brazil: a trend analysis. Scientific Reports, 11(1), 1097. doi: 10.1038/s41598-020-80026-5
Brasil Neto, R.M., Santos, C.A.G., Silva, R.M., Dos Santos, C.A.C. (2022). Evaluation of TRMM satellite dataset for monitoring meteorological drought in northeastern Brazil. Hydrological Sciences Journal, 67(14), 2100-2120. doi:10.1080/ 02626667.2022.2130333
Burn, D. H., & Whitfield, P. H. (2016). Changes in floods and flood regimes in Canada. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 41(1-2), 139-150. doi:10.1080/07011784.2015.1026844
Cai, W., Borlace, S., Lengaigne, M., Van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M.J., Wu, L. and England, M.H. (2014). Increasing frequency of extreme El Niño events due to greenhouse warming. Nature climate change, 4(2), 111-116. doi: 10.1038/nclimate2100
Caloiero, T., & Veltri, S. (2019). Drought assessment in the Sardinia Region (Italy) during 1922–2011 using the standardized precipitation index. Pure and Applied Geophysics, 176(2), 925-935. doi: 10.1007/s00024-018-2008-5
Caloiero, T., Coscarelli, R., Ferrari, E., Mancini, M. (2011). Precipitation changes in Southern Italy linked to global scale oscillation indexes. Natural Hazards and Earth System Sciences, 11(6), 1683-1694. doi.org/10.5194/nhess-11-1683-2011
Chen, L., Brun, P., Buri, P., Fatichi, S., Gessler, A., McCarthy, M. J., Pellicciotti, F., Stocker, B. & Karger, D. N. (2025). Global increase in the occurrence and impact of multiyear droughts. Science, 387(6731), 278-284. doi:10.1126/science. ado4245
Collins, M., An, S.I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F.F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A. and Vecchi, G. (2010). The impact of global warming on the tropical Pacific Ocean and El Niño. Nature Geoscience, 3(6), 391-397. doi:10.1038/ngeo868
Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45-65. doi:10.1002/wcc.81
Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4, 301-312. doi:10.1007/s40641-018-0101-6
Du, J., Kimball, J.S., Sheffield, J., Velicogna, I., Zhao, M., Pan, M., Fisher, C.K., Beck, H.E., Watts, J.D. and Wood, E.F. (2021). Synergistic satellite assessment of global vegetation health in relation to ENSO‐induced droughts and pluvials. Journal of Geophysical Research: Biogeosciences, 126(5), e2020JG006006. doi:10.1029/2020JG006006
Dutta, D., & Herath, S. (2004, July). Trend of floods in Asia and flood risk management with integrated river basin approach. In Proceedings of the 2nd international conference of Asia-Pacific hydrology and water resources Association, Singapore (Vol. 1, pp. 55-63).
Ganguli, P., Majhi, A., & Kumar, R. (2022). Observational evidence for multivariate drought hazard amplifications across disparate climate regimes. Earth's Future, 10(9), e2022EF002809. doi: 10.1029/2022EF002809
Ghazaryan, G., König, S., Rezaei, E. E., Siebert, S., & Dubovyk, O. (2020). Analysis of drought impact on croplands from global to regional scale: a remote sensing approach. Remote Sensing, 12(24), 4030. doi: 10.3390/rs12244030
Grimm, A. M., & Tedeschi, R. G. (2009). ENSO and extreme rainfall events in South America. Journal of Climate, 22(7), 1589-1609. doi:10.1175/2008JCLI2429.1
Herrera‐Estrada, J. E., Satoh, Y., & Sheffield, J. (2017). Spatiotemporal dynamics of global drought. Geophysical Research Letters, 44(5), 2254-2263. doi:10.1002/2016GL071768
Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., Pegion, P. (2012). On the increased frequency of Mediterranean drought. Journal of climate, 25(6), 2146-2161.
Holgate, C.M., Falster, G.M., Gillett, Z.E., Goswami, P., Grant, M.O., Hobeichi, S., Hoffmann, D., Jiang, X., Jin, C., Lu, X. and Mu, M. (2025). Physical mechanisms of meteorological drought development, intensification and termination: an Australian review. Communications earth & environment, 6(1), 220. doi: 10.1038/s43247-025-02179-3
Hosseinzadehtalaei, P., Van Schaeybroeck, B., Termonia, P., & Tabari, H. (2023). Identical hierarchy of physical drought types for climate change signals and uncertainty. Weather and Climate Extremes, 41, 100573. doi: 10.1016/j.wace.2023.100573
Huning, L., & AghaKouchak, A. (2020). Global snow drought hot spots and characteristics. Proceedings of the National Academy of Sciences, 117(33), 19753–19759. Doi: 10.1073/pnas.1915921117
Karamouz, M., Araghinejad, S., & Dezfuli, A. K. (2004). Climate regionalizing for the assessment of ENSO, NAO and SST effect on regional meteorological drought: Application of fuzzy clustering. In Critical Transitions in Water and Environmental Resources Management (pp. 1-10). doi:10.1061/40737
Kelley, C., Ting, M., Seager, R., Kushnir, Y. (2012). Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophysical Research Letters, 39(21).
Kenawy, A. E., Al-Awadhi, T., Abdullah, M., Ostermann, F. O., & Abulibdeh, A. (2025). A Multidecadal Assessment of Drought Intensification in the Middle East and North Africa: The Role of Global Warming and Rainfall Deficit. Earth Systems and Environment, 1-20. doi: 10.1007/s41748-025-00576-4
Li, Z., Huang, S., Zhou, S., Leng, G., Liu, D., Huang, Q., et al. (2021). Clarifying the propagation dynamics from meteorological to hydrological drought induced by climate change and direct human activities. Journal of Hydrometeorology, 22(9), 2359–2378. doi:10.1175/ jhm-d-21-0033.1
Limones, N., Molina, J. V., & Paneque, P. (2022). Spatiotemporal characterization of meteorological drought: a global approach using the Drought Exceedance Probability Index (DEPI). Climate Research, 88, 137-154. doi: 10.3354/cr01703
Lin, J., Qian, T., & Schubert, S. (2022). Droughts and Mega-droughts. Atmosphere-Ocean, 60(3-4), 245-306. doi: 10.1080/07055900.2022.2086848
Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International journal of climatology, 22(13), 1571-1592.
Masih, I., Maskey, S., Mussá, F. E. F., & Trambauer, P. (2014). A review of droughts on the African continent: a geospatial and long-term perspective. Hydrology and earth system sciences, 18(9), 3635-3649. doi:10.5194/hess-18-3635-2014
Mathbout, S., Lopez-Bustins, J. A., Royé, D., & Martin-Vide, J. (2021). Mediterranean-scale drought: Regional datasets for exceptional meteorological drought events during 1975–2019. Atmosphere, 12(8), 941.
Mirza, M. M. Q. (2003). Climate change and extreme weather events: can developing countries adapt? Climate policy, 3(3), 233-248. doi:10.3763/cpol.2003.0330
Momeny damaneh J, Tajbakhsh fakhrabadi M, Chezgy J, Tamasoki E. (2024). Spatial correlation of extreme temperatures and vegetation changes in the watersheds of Iran. Iranian Journal of Rainwater Catchment Systems, 12(2), 39-58. http://jircsa.ir/article-1-532-en.html
Nieves, A., Contreras, J., Pacheco, J., Urgilés, J., García, F., & Avilés, A. (2022). Assessment of drought time-frequency relationships with local atmospheric-land conditions and large-scale climatic factors in a tropical Andean basin. Remote Sensing Applications: Society and Environment, 26, 100760. doi: 10.1016/j.rsase.2022.100760
Nikraftar, Z., Mostafaie, A., Sadegh, M., Afkueieh, J.H. and Pradhan, B. (2021). Multi-type assessment of global droughts and teleconnections. Weather and Climate Extremes, 34, 100402. doi: 10.1016/j.wace.2021.100402
Niu, Q., She, D., Xia, J., Zhang, Q., Zhang, Y., & Wang, T. (2025). Uncertainty analysis of global meteorological drought in CMIP6 projections. Climatic Change, 178(4), 1-23. doi: 10.1007/s10584-025-03919-2
Paredes-Trejo, F., Olivares, B. O., Movil-Fuentes, Y., Arevalo-Groening, J., & Gil, A. (2023). Assessing the spatiotemporal patterns and impacts of droughts in the Orinoco River basin using earth observations data and surface observations. Hydrology, 10(10), 195. doi:10.3390/hydrology10100195
Rasmusson, E. M. (2019). Global prospects for the prediction of drought: A meteorological perspective. In Planning for Drought (pp. 31-43). Routledge. doi: 10.4324/9780429301735-3
Rodríguez., JV, Molina., PP, Salgado. (2022). Spatiotemporal characterization of meteorological drought: a global approach using the Drought Exceedance Probablity Index. Climate Research, 88:137-154. doi: 10.3354/cr01703
Santos, C.A.G., Brasil Neto, R.M., Nascimento, T.V.M., Silva, R.M., Mishra, M., Frade, T. G.(2020). Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of the Total Environment, 750, 141258. doi: 10.1016/j.scitotenv.2020.141258.
Sattari, M.T., Falsafian, K., Irvem, A., Qasem, S.N. (2020). Potential of kernel and tree-based machine-learning models for estimating missing data of rainfall. Engineering Applications of Computational Fluid Mechanics, 14(1), 1078-1094. doi: 10.1080/19942060.2020.1803971
Schubert, S.D., Stewart, R.E., Wang, H., Barlow, M., Berbery, E.H., Cai, W., Hoerling, M.P., Kanikicharla, K.K., Koster, R.D., Lyon, B. and Mariotti, A. (2016). Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. Journal of Climate, 29(11), 3989-4019. doi:10.1175/JCLI-D-15-0452.1.
Schubert, S.D., Stewart, R.E., Wang, H., Barlow, M., Berbery, E.H., Cai, W., Hoerling, M.P., Kanikicharla, K.K., Koster, R.D., Lyon, B. and Mariotti, A. (2016). Global meteorological drought: a synthesis of current understanding with a focus on SST drivers of precipitation deficits. Journal of Climate, 29(11), 3989-4019. doi:10.1175/JCLI-D-15-0452.1
Spinoni, J., Naumann, G.Vogt, J.V. Barbosa, P. (2015). The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies, 3, 509-524. doi: 10.1016/j.ejrh.2015.01.001
Tabari, H., Hosseinzadehtalaei, P., Thiery, W., Willems, P. (2021). Amplified drought and flood risk under future socioeconomic and climatic change. Earth’s Future 9 (10), e2021EF002295.
Tajbakhsh Fakhrabadi, S. M. and Momeny, J. (2023). Analysis and Zonation of Drought and the Impact of SOI and NAO on the Six Watersheds of Iran. Water and Soil Science, 33(1), 161-179. doi: 10.22034/ws.2021.44983.2407
Taylor, C.M., Lambin, E.F., Stephenne, N., Harding, R.J., Essery, R.L., 2002. The influence of land use change on climate in the Sahel. Journal of Climate, 15(24), 3615-3629.
Tijdeman, E., Barker, L. J., Svoboda, M. D., & Stahl, K. (2018). Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States. Water Resources Research, 54(9), 6005–6023. doi:10.1029/2017wr022412
Tokinaga, H., Xie, S. P., Deser, C., Kosaka, Y., & Okumura, Y. M. (2012). Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491(7424), 439-443. doi:10.1038/nature11576.
Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392., doi:10.1002/wat2.1085.
Van Loon, A. F., & Van Lanen, H. A. J. (2012). A process-based typology of hydrological drought. Hydrology and Earth System Sciences, 16(7), 1915–1946. doi: 10.5194/hess-16-1915-2012
Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K., Hannaford, J., et al. (2016). Drought in the anthropocene. Nature Geoscience, 9(2), 89–91. doi:10.1038/ngeo2646
Van Loon, A. F., Tijdeman, E., Wanders, N., Van Lanen, H. A. J., Teuling, A. J., & Uijlenhoet, R. (2014). How climate seasonality modifies drought duration and deficit. Journal of Geophysical Research: Atmospheres, 119(8), 4640–4656. doi: 10.1002/2013jd020383
Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., et al. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16(10), 1–27. doi: 10.1175/2012ei000434.1
Vicente-Serrano, S.M., López-Moreno, J.I., Lorenzo-Lacruz, J., El Kenawy, A., Azorin-Molina, C.,Morán-Tejeda, E., Pasho, E., Zabalza, J., Begueria, S., Angulo-Martinez, M. (2011). The NAO impact on droughts in the Mediterranean region. Hydrological, socioeconomic and ecological impacts of the north Atlantic oscillation in the mediterranean region, 23-40.
Vieira, M.J. and Stadnyk, T.A. (2023). Leveraging global climate models to assess multi-year hydrologic drought. npj Climate and Atmospheric Science, 6(1), 179. doi: 10.1038/s41612-023-00496-y
VijayaVenkataRaman, S., Iniyan, S., & Goic, R. (2012). A review of climate change, mitigation and adaptation. Renewable and Sustainable Energy Reviews, 16(1), 878-897. doi: 10.1016/j.rser.2011.09.009.
Wang, G.C., Zhang, Q., Band, S.S., Dehghani, M., Chau, K.W., Tho, Q.T., Zhu, S., Samadianfard, S., Mosavi, A. (2022). Monthly and seasonal hydrological drought forecasting using multiple extreme learning machine models. Engineering Applications of Computational Fluid Mechanics, 16(1), 1364-1381. doi: 10.1080/19942060.2022.2089732
Wu, G., Chen, J., Kim, J. S., Gu, L., Lee, J. H., & Zhang, L. (2022). Impacts of climate change on global meteorological multi-year droughts using the last millennium simulation as a baseline. Journal of Hydrology, 610, 127937. doi: 10.1016/j.jhydrol.2022.127937
Wu, J., & Dirmeyer, P. A. (2020). Drought demise attribution over conus. Journal of Geophysical esearch: Atmospheres, 125(4), e2019JD031255. doi: 10.1029/2019jd031255
Xu, Y., Yang, Z., Zhang, L., & Zhang, J. (2025). An Evaluation of the Capability of Global Meteorological Datasets to Capture Drought Events in Xinjiang. Land, 14(2), 219. doi:10.3390/land14020219
Yang, R., & Xing, B. (2022). Teleconnections of large-scale climate patterns to regional drought in mid-latitudes: A case study in Xinjiang, China. Atmosphere, 13(2), 230. doi: 10.3390/atmos13020230
Yuce, M. I., Aytek, A., Esit, M., Deger, I. H., Yasa, I., Simsek, A., & Ugur, F. (2025). Investigation of the meteorological and hydrological drought characteristics in yeşilirmak basin, Türkiye. Theoretical and Applied Climatology, 156(4), 1-16. doi: 10.1007/s00704-025-05437-8
Zeng, J., Li, J., Lu, X., Wei, Z., Shangguan, W., Zhang, S., Dai, Y. and Zhang, S. (2022). Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15(1), 100143. doi: 10.1016/j.aosl.2021.100143
Zhao, C., Huang, Y., Li, Z., Chen, M. (2018). Drought monitoring of Southwestern China using insufficient GRACE data for the long-term mean reference frame under global change. Journal of Climate. 31, 6897–6911. doi: 10.1175/JCLI-D-17-0869.1
Zhao, T., Dai, A. (2022). CMIP6 model-projected hydroclimatic and drought changes and their causes in the twenty-first century. Journal of Climate. 35 (3), 897–921. doi: 10.1175/JCLI-D-21-0442.1
Zhu, Z., Duan, W., Zou, S., Zeng, Z., Chen, Y., Feng, M., Qin, J. and Liu, Y. (2024). Spatiotemporal characteristics of meteorological drought events in 34 major global river basins during 1901–2021. Science of The Total Environment, 921, 170913. doi: 10.1016/j.scitotenv.2024.170913