Evaluating the soil retention ecosystem service using the InVEST model in Northeastern Iran

Document Type : Research/Original/Regular Article

Authors

1 MSc in Desert Management and Control, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran

2 Associate Professor, Department of Desert and Arid Zones Management, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Associate Professor, Rangeland and Watershed Management Department, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran

4 Assistant Professor, Department of Environment and Fisheries, Faculty of Natural Resources, Lorestan University, Khoramabad, Iran

5 MSc of Environment of Science, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Introduction

Soil plays an important role in providing essential services needed by humans and other organisms and provides a variety of ecosystem services. Soil retention as an ecosystem service refers to the ability of an ecosystem to maintain soil and prevent erosion. This service is crucial as soil plays a vital role in providing essential goods for humans and other organisms, as well as a range of ecosystem services. Effective soil and water conservation management practices, particularly in enhancing vegetation cover for soil stabilization, are key. Therefore, safeguarding soil function against natural and human-induced threats is a critical regulatory function of ecosystems. In arid and semi-arid regions of Iran, ongoing degradation and significant changes in climate have impacted land cover, especially rangelands, affecting water conservation and ecosystem services provision. The Food and Agriculture Organization of the United Nations highlights that sustainable soil management can help prevent land degradation. By implementing measures such as conservation agriculture, reducing soil erosion, and enhancing water management, the risk of land degradation can be significantly reduced. Soil erosion and the consequent depletion of soil resources pose serious ecological and environmental challenges globally, hindering sustainable human development. The InVEST sediment delivery ratio model, built on the RUSLE erosion model, is a valuable tool for evaluating soil erosion, sediment export, and soil conservation across various spatial and temporal scales, widely utilized on an international scale.

Materials and Methods

Sarakhs Township, covering an area of approximately 5471 square kilometers, is a small part of the vast Qaraqom basin. Due to its proximity to the Qaraqom desert, this region has the potential for desert development based on its natural conditions. The cold and dry climate, low rainfall, minimal land use changes, and soil erosion have led to critical conditions for land degradation in the area. In this study, soil retention and erosion were quantified using the Sediment Retention model in the InVEST software. The necessary inputs for the model, including digital elevation model maps, land use data, rainfall erosivity, soil erodibility, and a biophysical table in raster format, were prepared in the ArcGIS 10.8 environment and inputted into the model. The DEM map of the study area was downloaded from Iran's weather and climatology website and extracted in ArcGIS version 10.8. The R factor was calculated using equation (5) based on index stations, and the R index was interpolated for the entire study area using the IDW method to create a rain erosion spatial layer in GIS. Data on the percentage of sand, silt, and clay were obtained from global soil information, converted to percentages, and used to calculate the soil erodibility index in the Raster calculator tool of the GIS environment. The NDVI index was calculated from Landsat satellite images in the Google Earth Engine platform. The P coefficient was determined using the slope-based Wenner method. A csv table with integer codes for each land use class in the land use map was required to run the model.

Results and Discussion

The findings indicated a wide range of soil retention levels, ranging from 0.47 to 0.53 tons per pixel per year, across different land uses. Pasture lands exhibited the highest soil retention rate at 5.98 tons per hectare per year, while residential areas had the lowest rate at 0.08 tons per pixel per year. The southwest region of the study area demonstrated the highest sediment retention capacity, likely due to the superior condition and quality of pastures in that area compared to other regions in the basin. Conversely, the central and eastern areas experienced increased erosion rates due to frequent land use changes and reduced vegetation cover. Developing a model to assess the ecosystem service of soil retention is crucial for effective ecosystem management. By utilizing spatial modeling, land managers can strategically plan to reduce sediment load at the watershed level by identifying conservation-worthy areas with high sediment retention capacity and optimizing land use practices.

Conclusion

To sum up, soil erosion and sediment production are significant issues in developing countries, leading to the destruction of agricultural lands, dam reservoir filling, and water pollution. This study highlights the importance of rangeland cover in soil conservation, with areas of low vegetation cover experiencing higher rates of erosion. The decline in sediment conservation in rangeland lands is attributed to reduced vegetation cover, caused by factors such as population growth, excessive livestock grazing, and prolonged land use. Land use change emerges as the primary factor influencing erosion rates and sediment conservation values. Given Sarakhs township's potential for desertification and its cold, arid climate with minimal rainfall, future studies should also assess wind erosion alongside water erosion. The results of this study can be useful in developing an ecosystem services management plan for land managers to have more effective spatial planning by identifying areas with conservation value due to the high supply of soil conservation and also paying attention to land use.

Keywords

Main Subjects


منابع
اسدالهی، زهرا، و نوروزی نظر، محمدصادق (1399). کمّی‌سازی خدمات اکوسیستمی کنترل فرسایش خاک تحت تأثیر تغییرات اقلیمی در حوزه آبخیز گرگانرود. پژوهش‌های محیطی، 11(21)، 3-16. ‎ dor: 20.1001.1.22517812.1394.5.3.6.6
اسدالهی، زهرا، و کشتکار، مصطفی (1398). بررسی تطبیقی ابزارهای مدل‏‌سازی خدمات هیدرولوژیکی اکوسیستم. آب و توسعه پایدار، 6(2)، 54-47.  doi: 10.22067/jwsd.v6i2.81066
اسدالهی، زهرا، سلمان ماهینی، عبدالرسول، و میرکریمی، سید حامد (1394). مدل‌سازی خدمت اکوسیستمی نگهداشت خاک (مطالعه موردی: ناحیه شرقی حوزه آبخیز گرگانرود). پژوهش‌های فرسایش محیطی، ۵ (۳)، ۶۱-۷۵.  dor:20.1001.1.22517812.1394.5.3.6.6
بالویی، فاطمه، محمدی، شاهین، و سلطانی کوپائی، سعید  (1401). شبیه‌سازی تأثیر تغییرات کاربری اراضی بر فرسایش خاک با استفاده از مدل RUSLE در حوضۀ دویرج استان ایلام. مهندسی اکوسیستم بیابان، 10(31)، 59-70. doi: 10.22052/deej.2021.10.31.39
تیموری، فاطمه، بذرافشان، ام البنین و رفیعی ساردویی، الهام (1398). ارزیابی اثر تغییر اقلیم و تغییر کاربری اراضی بر فرسایش خاک (مطالعۀ موردی: حوضۀ آبخیز کندران).  اکوهیدرولوژی، 6(2)، 353-368. doi: 10.22059/ije.2019.274886.1038
جعفری فوتمی، عیسی، نیک نهاد قرماخر، حمید، اکبرلو، موسی، و بهره مند، عبدالرضا (1396). مطالعه اثرات عملیات بیومکانیکی حفاظت خاک و آب بر برخی خصوصیات خاک (مطالعه موردی: ارتفاعات بالادست حوزه آبخیز گرگان رود). مدیریت حوزه آبخیز، 8(15)، 234-225. doi:10.29252/jwmr.8.15.225 .225
جوکار، حمید (1396). ارزیابی خدمات اکوسیستم حفظ رسوب با استفاده از نرم‌افزارInVEST  (مطالعه موردی: حوضه دلیچای در حوضه شمالی حبله رود). پایان نامه کارشناسی ارشد مدیریت مرتع، دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
جهانی، محمد، طالقانی، سجاد، اکبری، مرتضی (1403). ارزیابی کمّی پتانسیل فرسایش‌پذیری خاک با استفاده از مدل SLEMSA (مطالعه موردی: حوزه آبخیز کرخه استان لرستان، ایران). پژوهش‌های فرسایش محیطی، 14(2)، 161-179. doi: 10.61186/jeer.14.2.10
درمانی، معصومه، راشکی، علیرضا، آرا، هایده، و مافی، آبرادات (1401). ژئوشیمی واحدهای زمین شناسی شهرستان سرخس با نگرش بر پتانسیل ایجاد گرد و غبار. مخاطرات محیط طبیعی، 11(32)، 19-36. doi: 10.22111/jneh.2022.36242.1718
ذوالفقاری، مریم، سلمان ماهینی، عبدالرسول، و کامیاب، حمیدرضا (1403). ارزیابی اثر تغییرات کاربری اراضی بر خدمت اکوسیستمی نگهداشت خاک در استان گلستان. محیط زیست طبیعی، 77(2)، 203-225. doi: 10.22059/jne.2024.372662.2650
رحیمیانی ایرانشاهی، حمید، مرادی، حمیدرضا و جلیلی، خلیل (1401). روند تغییرات بارش و دما در مقیاس‌های زمانی مختلف در حوزة آبخیز کرخه. مدل‌سازی و مدیریت آب و خاک، 2(2)، 1-12. doi: 10.22098/mmws.2022.9520.1048
زرندیان، اردوان، محمدیاری، فاطمه، موسی زاده، رویا، رمضانی مهریان، مجید، و بادام فیروز، جلیل (1402). ارزیابی نقش کاربری اراضی در عرضه خدمت اکوسیستمی نگهداشت خاک (مطالعه موردی: استان سمنان). محیط زیست و توسعه فرابخشی، 8(81)، 119-107. doi: 10.22034/envj.2024.432019.1331
زرین آبادی، احسان و واعظی، علیرضا (1395). رواناب و از دست دادن خاک تحت تأثیر تغییر کاربری اراضی و جهت شخم در مراتع پوشش گیاهی ضعیف. تحقیقات آب و خاک ایران، 47(1)، 87-98. doi: 10.22059/ijswr.2016.57981
سالاروند، جواد، قاسمی آقباش، فرهاد، و  اسدالهی، زهرا (1398). بررسی نقش پوشش جنگلی در نگهداشت خاک به‌عنوان یک خدمت اکوسیستمی (مطالعه موردی: استان لرستان). فضای جغرافیایی، ۱۹ (۶۷)، 78-61.
سربازی، محبوبه، اونق، مجید، محمدیان بهبهانی، علی، و اکبری، مرتضی (1399). ارزیابی و مدل‌سازی تغییرات زمانی- مکانی کاربری اراضی در گسترش شدت بیابان‌زایی مناطق خشک شمال شرق ایران (سرخس). جغرافیا و مخاطرات محیطی، 9(2)، 1-18. doi: 10.22067/geo.v9i2.85890
شاه کرمی، عزیزاله، عالی نژادیان بیدآبادی، افسانه، ملکی، عباس، و فیضیان، محمد (1404). ارزیابی اثرات عملیات حفاظت خاک و آب بر ویژگی‌های خاک، فرسایش و رسوب در حوزه آبخیز ریمله استان لرستان. مدل‌سازی و مدیریت آب و خاک، 5(1)، 15-28. doi: 10.22098/mmws.2024.14122.1392
کامیاب، حمیدرضا، و شعبانی، نسیم (1398). تاثیر تغییر کاربری/پوشش زمین بر خدمات اکوسیستم در استان گلستان. علوم محیطی، 17(2)، 43-56. doi: 10.29252/envs.17.2.43
محمدی، شاهین، کریم‌زاده، حمیدرضا و علیزاده، میثم (1397). برآورد مکانی فرسایش خاک کشور ایران با استفاده از مدل RUSLE اکوهیدرولوژی، 5(2)، 551-569. doi: 10.22059/ije.2018.239777.706
محمدیاری، فاطمه، و توکلی، محسن (1402). ارزیابی توزیع فضایی خدمات اکوسیستم فرهنگی حوزه آبخیز شهر ایلام: مدل‌سازی ارزش زیبایی‌شناختی. محیط زیست و توسعه فرابخشی، 8(82)، 63-75. doi: 10.22034/envj.2024.429187 .1324
مخدوم، مجید (1381). شالوده آمایش سرزمین. تهران، انتشارات دانشگاه تهران
مسعودی، مسعود، و شیرگیر، سمیه (1400). ارزیابی کارآیی مدل بیابان‌زایی IMDPA در تعیین فرسایش‌های آبی و بادی. مدیریت حوزه آبخیز، ۱۲ (۲۳) ، 12-25. doi:10.52547/jwmr.12.23.12
معماریان، هادی، و اکبری، مرتضی (1400). پیش‏بینی اثر ترکیبی تغییر اقلیم و کاربری اراضی بر فرسایش خاک در ایران با استفاده از داده ‏های جهانی GloSEM. اکوهیدرولوژی، 8(2)، 513-534. doi: 10.22059/ije.2021.320754.1482
نمازی، محدثه، اکبری، مرتضی، معماریان، هادی، اسدالهی، زهرا (1403). ارزیابی روند خشکسالی و تأثیر آن بر تغییرات پوشش گیاهی شهرستان سرخس. سامانه‌های سطوح آبگیر باران، ۱۲ (۲) ، 59-78. dor: 20.1001.1.24235970.1403.12.2.5.0
 
References
Akbari, M., Memarian, H., Neamatollahi, E., Jafari Shalamzari, M., Alizadeh Noughani, M., & Zakeri, D. (2021). Prioritizing policies and strategies for desertification risk management using MCDM–DPSIR approach in northeastern Iran. Environment, Development and Sustainability, 23, 2503-2523. doi.org/10.1007/s10668-020-00684-3
Akbari, M., Neamatollahi, E., & Neamatollahi, P. (2019). Evaluating land suitability for spatial planning in arid regions of eastern Iran using fuzzy logic and multi-criteria analysis. Ecological indicators, 98, 587-598. doi: 10.1016/j.ecoli nd.2018.11.035
Akbari, M., Neamatollahi, E., Memarian, H., & Alizadeh Noughani, M. (2023). Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran. Natural Hazards, 117(2), 1689-1710. doi:10.1007/s11069-023-05925-y
Akbari, M., Neamatollahi, E., Noughani, M.A., & Memarian, H. (2022). Spatial Distribution of Soil Erosion Risk and Its Economic Impacts Using an Integrated CORINE-GIS Approach. Environmental Earth Sciences, 81, 287. doi:10.1007/s12665-022-10405-w
Akbari, M., Shalamzari, M. J., Memarian, H., & Gholami, A. (2020). Monitoring desertification processes using ecological indicators and providing management programs in arid regions of Iran. Ecological indicators, 111, 106011. doi:10.1016/j.ecolind.2019.106011
Asadolahi, Z., & Norouzi Nazar, M.S. (2020). Quantifying the Soil Erosion Control Ecosystem Service Under Climate Change in Gorgan roud Watershed. Environmental Researches, 11(21), 3-16. dor: 20.1001.1.22517812.1394.5.3.6.6 [In Persian] ‎
Asadolahi, Z., Salmanmahiny, A., & Mirkarimi, H. (2015). Modeling the supply of sediment retention ecosystem service (case study: eastern part of Gorgan-rud watershed). Environmental Erosion Research Journal, 5(3), 61-75. dor:20.1001.1.22517812.1394.5.3.6.6 [In Persian]
Asadollahi, Z., & Keshtkar, M. (2019). A comparative study of modeling tools for hydrological ecosystem services. Water and Sustainable Development, 6(2), 47-54.  doi: 10.22067/jwsd.v6i2.81066 [In Persian]
Azimi, M., Barzali, M., Abdolhosseini, M., & Lotfi, A. (2021). Examining the impact of rangeland condition on water conservation by using an integrated modelling approach. Land Degradation & Development, 32(13), 3711-3719. doi:10.1002/ldr.3830
Balouei, F., Mohammadi, S., & Soltani kopaei, S. (2022). Effect of Vegetation and Conservation Factor on Soil Erosion Using RUSLE Model in Doiraj Basin of Ilam Province. Desert Ecosystem Engineering, 10(31), 59-70. doi: 10.22052/deej.2021.10.31.39 [In Persian]
Bautista, S., Mayor, A. G., Bourakhouadar, J., & Bellot, J. (2007). Plant spatial pattern predicts hillslope runoff and erosion in a semiarid Mediterranean landscape. Ecosystems, 10, 987-998. 10, 987-998. doi:10.1007/s10021-007-9074-3
Belay, T., & Mengistu, D. A. (2021). Impacts of land use/land cover and climate changes on soil erosion in Muga watershed, Upper Blue Nile basin (Abay), Ethiopia. Ecological Processes, 10, 1-23. doi: 10.1186/s13717-021-00339-9
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., ... & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature communications, 8(1), 2013.
Darmany, M., Rashki, A., Ara, H., & Mafi, A. (2022). Sediments geochemistry of geological units of Sarakhs region: implications to the dust emission. Journal of Natural Environmental Hazards, 11(32), 19-36. doi: 10.22111/jneh.2022.36242.1718 [In Persian]
Emamian, A., Rashki, A., Kaskaoutis, D. G., Gholami, A., Opp, C., & Middleton, N. (2021). Assessing vegetation restoration potential under different land uses and climatic classes in northeast Iran. Ecological Indicators, 122, 107325. doi:10.1016/j.ecolind.2020.107325
FAO. (2015). "Status of the World's Soil Resources Report," 2015.www.fao.org/soils-portal.
Jafari Footemi, I., Niknahad Gharamakher, H., Akbalou, M., & Bahremanh, A. (2017). Investigation on the Effects of Biomechanical Water and Soil Conservation Practices on some Soil Properties (Case study: Upstream Mountains of Gorgan-roud catchment). Journal Water Management Resources, 8(15), 225- 234. doi:10.29252/jwmr.8.15.225. [In Persian]
Jahani, M., Taleghani, S., & Akbari, M. (2024). Quantitative evaluation of soil erodibility potential using SLEMSA model (Case study: Karkheh watershed, Lorestan province, Iran). Environmental Erosion Research, 14 (2) ,161-179. doi: 10.61186/jeer.14.2.10 [In Persian]
Jokar, H. (2017). Evaluation of sediment conservation ecosystem services using InVEST software (Case study: Delichay basin in the northern Hableh Rud basin). Master's thesis in Rangeland Management. Gorgan University of Agricultural Sciences and Natural Resources, 87. [In Persian]
Joorabian Shooshtari, S., Ardakani, T., & Beik Khormizi, H. (2025). Modeling future sediment retention service in the Bagh-e-Shadi Forest protected area using InVEST and the ACCESS-ESM1-5 climate model. Scientific Reports, 15(1), 3435. doi:10.1038/s41598-025-88169-z
Kamyab, H., & Shabani, N. (2019). The impact of land use/land cover change on ecosystem services in Golestan province. Environmental Sciences, 17(2), 43-56. doi: 10.29252/envs.17.2.43 [In Persian]
Lal, R., Safriel, U., & Boer, B. (2012, May). Zero net land degradation: A new sustainable development goal for Rio+ 20. In United Nations Convention to Combat Desertification (UNCCD).
Li, N., Zhang, Y., Wang, T., Li, J., Yang, J., & Luo, M. (2022). Have anthropogenic factors mitigated or intensified soil erosion over the past three decades in South China? Journal of Environmental Management, 302, 114093. doi: 10.1016/j.jenvman.2021.114093
Li, T., Cui, L., Xu, Z., Liu, H., Cui, X., & Fantke, P. (2023). Micro-and nanoplastics in soil: Linking sources to damage on soil ecosystem services in life cycle assessment. Science of the Total Environment, 904, 166925. doi: 10.1016/j.scitotenv.2023.166925
Lin, C. Y., Lin, W. T., & Chou, W. C. (2002). Soil erosion prediction and sediment yield estimation: The Taiwan experience. Soil and Tillage Research, 68(2), 143-152. doi:10.1016/S0167-1987 (02)00114-9
Makhdoom, M. (2002). The Foundation of Land Planning. Tehran, Tehran University Press.
Marques, S. M., Campos, F. S., David, J., & Cabral, P. (2021). Modelling sediment retention services and soil erosion changes in Portugal: a spatio-temporal approach. ISPRS International Journal of Geo-Information, 10(4), 262. doi:10.3390/ijgi10040262
Mashizi, A. K., Heshmati, G. A., Mahini, A. R. S., & Escobedo, F. J. (2019). Exploring management objectives and ecosystem service trade-offs in a semi-arid rangeland basin in southeast Iran. Ecological Indicators, 98, 794-803. doi.: 10.1016/j.ecolind.2018.11.065
Masoudi, M., & Shirghir, S. (2021). Efficiency Assessment of Desertification Model of IMDPA for Evaluating of Water and Wind Erosions. Journal of Watershed Management Research, 12(23), 12-25. doi:10.52547/jwmr.12.23.12 [In Persian]
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., ... & Wittenberg, U. (2001). Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models. Global biogeochemical cycles, 15(1), 183-206. doi:10.1029/2000GB001298
McMahon, J. M., Hasan, S., Brooks, A., Curwen, G., Dyke, J., Saint Ange, C., & Smart, J. C. (2022). Challenges in modelling the sediment retention ecosystem service to inform an ecosystem account–Examples from the Mitchell catchment in northern Australia. Journal of Environmental Management, 314, 115102. doi: 10.1016/j.jenvman.2022.115102
Memarian, H., & Akbari, M. (2021). Prediction the combined effect of climate   and land use changes on soil erosion in Iran using GloSEM data. Journal of Ecohydrology, 8(2), 513-534. doi: 10.22059/ije.2021.320754.1482. [In Persian]
Memarian, H., Hossein Nia, A., Tavasoli, A., Komeh, Z., Tajbakhsh, S. M., Abbasi, A. A., & Parsayi, L. (2016). Health and environmental considerations of rooftop catchment systems (Case study: Aq Ghala, Golestan Province, Iran). Water Harvesting Research, 1(1), 1-11. doi:10.22077/JWHR.2017.372
Mohammadi, S., Karimzadeh, H., & Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model. Journal of Ecohydrology, 5(2), 551-569. doi: 10.22059/ije.2018.239777.706 [In Persian]
Mohammadiyari, F., & Tavakoli, M. (2024). Cultural Ecosystem Services of Ilam Urban Watershed: Modeling Aesthetic Value. Environment and Interdisciplinary Development, 8(82), 63-75. doi: 10.22034/envj.2024.429187 .1324 [In Persian]
Nabati, J., Nezami, A., Neamatollahi, E., & Akbari, M. (2020). GIS-based agro-ecological zoning for crop suitability using fuzzy inference system in semi-arid regions. Ecological indicators, 117, 106646. doi: 10.1016/j.ecolind.2020.106646
Namazi, M., Akbari, M., Memarian, H., & Asadolahi, Z. (2024). Drought trend evaluation and its impact on vegetation cover changes of Sarakhs county. Journal of Rainwater Catchment Systems, 12 (2), 59-78. dor: 20.1001.1.24235970.1403.12.2.5.0 [In Persian]
Qiao, X., Li, Z., Lin, J., Wang, H., Zheng, S., & Yang, S. (2024). Assessing current and future soil erosion under changing land use based on InVEST and FLUS models in the Yihe River Basin, North China. International Soil and Water Conservation Research, 12(2), 298-312.doi: 10.1016/j.iswcr.2023.07.001
Rahimiani Iranshahi, H. , Moradi, H. R. and Jalili, K. (2022). Trend of precipitation and temperature changes at different time scales in the Karkheh Watershed. Water and Soil Management and Modelling, 2(2), 1-12. doi: 10.22098/mmws.2022.9520.1048 [In Persian]
Rahimiani Iranshahi, H., Moradi, H.R., & Jalili, Kh. (2022). Trend of precipitation and temperature changes at different time scales in the Karkheh Watershed. Water and Soil Management and Modeling, 2(2), 1-12. doi: 10.22098/mmws.2022.9520.1048 [In Persian]
Rajbanshi, J., & Das, S. (2021). Changes in carbon stocks and its economic valuation under a changing land use pattern—A multi-temporal study in Konar catchment, India. Land Degradation & Development, 32(13), 3573-3587. doi: 10.1002/ldr.3959
Renard, K.G., & Freimund, J.R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1), 287-306. doi:10.1016/0022-1694 (94)90110-4
Robinson, D. A., Panagos, P., Borrelli, P., Jones, A., Montanarella, L., Tye, A., & Obst, C. G. (2017). Soil natural capital in Europe; a framework for state and change assessment. Scientific reports, 7(1), 6706. doi.: 10.1038/s41598-017-06819-3
Salarvand, J., Ghasemi-Aqbash, F., & Asadollahi, Z. (2019). Investigating the role of forest cover in soil conservation as an ecosystem service. (Case study: Lorestan province). Geographical Space, 19 (67), 61-78. [In Persian]
Sarbazi, M., Ownegh, M., Mohammadian Behbahani, A., & Akbari, M. (2020). Evaluation and Modeling Temporal-Spatial Changes of Land Use in Expansion of Desertification Intensity in the Arid Regions of Northeast Iran (Sarakhs). Journal of Geography and Environmental Hazards, 9 (2), 1-18. doi: 10.22067/geo.v9i2.85890 [In Persian]
Shahkarami, A., Alinejadian-Bidabadi, A., Maleki, A., & Feizian, M. (2025). Evaluation of the effects of soil and water protection operations on soil characteristics, erosion and sedimentation in the Rimele watershed of Lorestan province. Water and Soil Management and Modelling, 5(1), 15-28. doi: 10.22098/mmws.2024.14122.1392 [In Persian]
Sharp, R., Chaplin-Kramer, R., Wood, S., Guerry, A. D., Tallis, H. T., Taylor, R. (2014). InVEST 3.0.0 Users Guide. The Natural Capital Project.
Sharp, R., Chaplin-Kramer, R., Wood, S., Guerry, A., Tallis, H., & Taylor, R. (2014). InVEST User’s Guide: Integrated Valuation of Environmental Services and Tradeoffs (Stanford, CA: The Natural Capital Project), 321.
Sharply, A., & Williams, J. (1990. ( EPIC——Erosion/Productivity Impact Calculator 1. Model Documentation. United States Department of Agriculture. Technical Bulletin Number 1768. USDA-ARS, Washington D.C
Srichaichana, J., Trisurat, Y., & Ongsomwang, S. (2019). Land use and land cover scenarios for optimum water yield and sediment retention ecosystem services in Klong U-Tapao Watershed, Songkhla, Thailand. Sustainability, 11(10), 2895. doi: 10.3390/su11102895
Tamire, C., Elias, E., & Argaw, M. (2022). Spatiotemporal dynamics of soil loss and sediment export in Upper Bilate River Catchment (UBRC), Central Rift Valley of Ethiopia. Heliyon, 8(11). doi: 10.1016/j.heliyon. 2022.e11220
Teymouri, F., Bazrafshan, A., & Rafiei Sardavii, A. (2019). Assessment of Climate Change and Land Use Change on Soil Erosion (Case study: Kondaran watershed). Journal of Ecohydrology, 6(2), 353-368. doi: 10.22059/ije.2019.274886.1038 [In Persian]
UNCCD. (2019). Land degradation, poverty and inequality. https://www.unccd.int/publications/landdegradation-poverty-and-inequality.
Wenner, C. G., & Kenya Soil Conservation Extension Unit. (1981). Soil conservation in Kenya, especially in small-scale farming in high potential areas using labour intensive methods (7th rev. ed). Soil Conservation Extension Unit, Ministry of Agriculture.
Wischmeier, W.H., & Smith, D.D. (1978). Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. The USDA Agricultural Handbook No. 537.
Zarandian, A., Mohammadiari, F., Musazadeh, R., Ramezani Mehrian, M., & Badam Firuz, J. (2023). Evaluating the role of land use in provision of soil retention eecosystem sservice (Case study: Semnan Province). Environment and Interdisciplinary Development, 8(81), 107-119. doi: 10.22034/envj.2024.432019.1331 [In Persian]
Zarrinabadi, E., & Vaezi, A.R. (2016). Runoff and soil loss as affected by land use change and plough direction in poor vegetation cover pastures. Iranian Journal of Soil and Water Research, 47(1), 87-98. doi: 10.22059/ijswr.2016.57981 [In Persian]
Zolfaghari, M., Salmanmahiny, A., & Kamyab, H. (2024). Evaluation of the effects of land use changes on sediment retention ecosystem service in Golestan Province. Journal of Natural Environment, 77(2), 203-225. doi:10.22059/jne.2024.372662.2650 [In Persian]