Evaluation of the SEBAL for Estimating Actual Evapotranspiration in the Area of the Gareh Bygone Plain Floodwater Spreading Project

Document Type : Case-study Article

Authors

1 Assistant Professor, Soil Conservation and Watershed Management Research Department, Fars Agricultural Research, Education and Extension Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

2 Associate Professor, Soil Conservation and Watershed Management Research Department, Fars Agricultural Research, Education and Extension Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran

3 Associate Professor, Hydrology and Water Resources Development Department, Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

Abstract

Abstract

Introduction

Accurate estimation of actual evapotranspiration (ETa) is essential for sustainable water resource management, particularly in arid and semi-arid regions. This study employed the SEBAL model in conjunction with Landsat 8 and 9 satellite imagery to estimate ETa in the Gareh Bygone Plain, Fars Province, during 2018–2021. The model integrated corrected satellite data and meteorological inputs to compute key surface energy balance components, including net radiation, soil heat flux, and latent heat flux. Calibration was enhanced by incorporating wind speed data, improving the model’s accuracy. ETa values varied seasonally, ranging from 0.8 to 3.2 mm/day in colder months and 1.8 to 6.5 mm/day during warmer periods. The model’s results were validated against FAO Penman-Monteith reference ET and field measurements, confirming strong agreement. Crop coefficient (Kc) estimates highlighted significant variability based on vegetation type and growth stages. The complementary use of the SEBS model yielded ETa estimations with a low error margin (3–5%), further confirming the reliability of remote sensing-based approaches. These findings support the application of calibrated satellite models and localized parameters in optimizing irrigation strategies and addressing water scarcity in semi-arid environments.

Accurate estimation of actual evapotranspiration (ETa) is crucial for water resource management and evaluating the efficiency of artificial recharge projects in arid regions. Traditional methods relying on point-based measurements often fail to represent large-scale and heterogeneous areas. Remote sensing technologies, utilizing satellite data and surface energy balance models such as SEBAL, enable precise estimation of ETa and crop coefficients (Kc) over extensive spatial and temporal scales. This study aimed to assess water consumption of various vegetation covers and the effectiveness of the flood spreading system in the Gareh Bygone plain, Fars Province, by developing improved models and analyzing the spatiotemporal distribution of ETa.



Materials and Methods

This study was carried out at the Kosar floodwater spreading station in the semi-arid Gareh Bygone Plain of southern Iran’s Fars Province.The Gareh Bygone Plain, with an approximate area of 192 square kilometers, is located downstream of three main watershed areas. The area features an semi-arid to arid climate, an average annual precipitation of 229 mm, and geology comprising limestone, marl, and conglomerates. Satellite data from Landsat 8 and 9, processed with geometric, radiometric, and atmospheric corrections, served as input for the SEBAL model. This model estimates actual evapotranspiration by integrating satellite imagery and meteorological data using the surface energy balance equation. Vegetation indices such as NDVI and SAVI, surface albedo, surface temperature, and other surface energy parameters were used in ETa estimation. Model results were validated with field measurements, including reference evapotranspiration, soil water balance, and estimates of return flow.



Results and Discussion

Satellite imagery from Landsat 8 Level 2, covering 2018–2021, was used to derive ETa maps via the SEBAL model. Due to data acquisition limitations in certain provinces, temporal coverage was incomplete. The SEBAL model, calibrated with meteorological data and incorporating wind speed as a parameter, showed good performance in estimating ETa, particularly in the Gareh Bygone plain. Comparison of SEBAL-derived ETa values with FAO Penman-Monteith reference estimates, using a crop coefficient (Kc=1.05), demonstrated the model’s reasonable accuracy. ETa values ranged from 0.8 to 3.2 mm/day during the cold season and from 1.8 to 6.5 mm/day in the warm season, reflecting a seasonal pattern consistent with the region’s climatic conditions. These results highlight the importance of using satellite data and optimizing model parameters for more accurate ETa estimation. Analysis of SEBAL model results revealed seasonal fluctuations in ETa influenced by temperature, solar radiation, and vegetation cover. ETa values ranged from 0.8 to 6.5 mm/day, peaking during the warm season. The crop coefficient (Kc) was closely linked to vegetation type and growth stage, emphasizing the need to consider these differences in water management. Field measurements of soil (moisture, texture, bulk density) in the Gareh Bygone plain indicated a progressive increase in water infiltration depth and return flow volume during the irrigation season. Comparison of SEBS model-derived ETa with field data confirmed the high accuracy of the SEBS model (error margin of 3–5%), demonstrating its superiority over traditional methods and its effectiveness for agricultural water resource management in semi-arid regions. Computational results showed an increasing trend in return flow volume throughout the 11 irrigation cycles, reaching a significant amount by the end of the season. This finding has important implications for water resource management in the region.



Conclusion

This study employed Landsat 8 imagery to estimate actual evapotranspiration (ETa) using the SEBAL model in the semi-arid Gareh Bygone Plain. Results indicate a strong correlation between seasonal ETa variations and temperature, solar radiation, and land surfaces vegetation activity, with peak ETa during the warm season (April-October) and minimum during the cold season (December-February). This seasonal pattern aligns with the semi-arid climate and highlights the importance of considering spatiotemporal variability in ETa estimations. Furthermore, incorporating wind speed significantly improved SEBAL model accuracy.

Keywords

Main Subjects


منابع:
امیدوار، جواد، نوری، سمیرا، داوری، کامران، و فریدحسینی، علیرضا (1392). برآورد تبخیر و تعرق واقعی مبتنی بر تصاویر ماهواره ای با استفاده از دو الگوریتم سبال و متریک. مهندسی آبیاری و آب ایران، 3 (12)، 11-22.
ایلامی، بهمن، پاک‌پرور، مجتبی، حسینی مرندی، حمید، جوکار، لادن، روستا، محمدجواد، رهبر، غلامرضا، سررشته‌داری، امیر،سلیمان‌پور، سید مسعود، قهاری، غلامرضا، کریم‌زادگان، حسن، کریمی، عبدالحمید، کوثر، سید آهنگ، کمالی، کوروش، محمدنیا، مهرداد، مرتضوی جهرمی، سید مرتضی، مصباح، سید حمید، نجابت، مسعود، نکوئیان، غلامعلی، هاشمی، حسین (1403). درس‌هایی از نیم سده پژوهش‌های آبخوان‌داری با گسترش سیلاب. پژوهشکده حفاظت خاک و آبخیزداری، تهران، 240 صفحه.
 پیری، حلیمه و پوزن، محمد طاهر (1398). ارزیابی 24 مدل تبخیر و تعرق گیاه مرجع در اقلیم‏های مختلف ایران. اکوهیدرولوژی،6(3).
رستمی زاد، قباد، پاک پرور، مجتبی، عبدی نژاد، پرویز، عبداللهی، زهرا و خلفی، جعفر . (1403). برآورد مقدارتبخیر-تعرق محدوده متاثر از عرصه پخش سیلاب با استفاده از الگوریتم متریک. مهندسی و مدیریت آبخیز، 16(1)، 154-169 doi:10.22092/ijwmse.2023.361980.2016
رییسی، مریم، حقی‌زاده، علی، نوذری، حامد، و زینی‌وند، حسین (1404) برآورد تبخیر _ تعرق واقعی کشت آبی و باغات دشت نهاوند با استفاده از الگوریتم SEBAL، مدل سازی و مدیریت آب و خاک، 5(1)، 213-230 doi:10.22098/mmws.2024.15091.1462
زارع خورمیزی، هادی، علی طویلی و غفاریان مالمیری، حمیدرضا (1400). برآورد تبخیر و تعرق واقعی با استفاده از الگوریتم سیبال (SEBAL) و مقایسۀ آن با تبخیر و تعرق استاندارد فائو 56 بهبود یافته با رابطۀ NDVI-KC. سنجش از دور و GIS ایران، 13(3)، 92-73. doi:10.52547/gisj.13.3.73
سالاری، حامد، کاشکی، عبدالرضا، کرمی، مختار و زندی، رحمان (1402). ارزیابی اثرات تغییر اقلیم بر نیاز آبی محصول پنبه در استان خراسان رضوی. پژوهش‌های اقلیم‌شناسی، 14(53)، 163-172.
عمادزاده، مریم (1386). کاربرد سنجش ازدور در تخمین کارایی آب در مقیاس حوضه‌ای (مطالعه موردی در زیر حوضة قره سو)، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران. 135صفحه.
فخار، محدثه سادات و کاویانی، عباس (1403). برآورد تبخیر-تعرق واقعی با استفاده از داده‌های سنجش از دور به‌منظور بهبود مدیریت منابع آب. مدیریت آب و آبیاری، 14(3)، 629-648 doi: 10.22059/jwim.2024.369438.1123
قربانی، اردوان، فرامرزی،محمد، کرمی، جلال، غلامی ، نبی الله و سبحانی، بهروز (1394). ارزیابی مقایسه‌ای الگوریتم‌های سیبال و متریک در برآورد تبخیر-تعرق: مطالعه موردی شهرستان ملایر. برنامه‌ریزی و آمایش فضا، 19(2)، 184-153
محمود زاده، الهام، انوری، صدیقه (1400). تحلیل حساسیت الگوریتم SEBAL در برآورد نیاز آبی محصولات زراعی. پژوهشنامه مدیریت حوضه آبخیز، (24)12، 217-227. doi: 10.52547/jwmr.12.24.217  
 
References
Alazba, A. A., Shakir, A. S., & Al-Ghobari, H. M. (2024). Evaluation of surface energy balance models for estimating actual evapotranspiration in an arid region. Earth Systems and Environment, 8(4), 563–576. doi:10.1007/s41748-023-00379-z
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper No. 56). Rome: FAO.
Allen, R., G, M. Tasumi and R. Trezza, (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. ASCE Journal of Irrigation and Drainage Engineering, 133: 380-394. doi:10.1061/(ASCE)0733-9437(2007)133:4(380)
Allen, R. G., L. S. Pereira, T. A. Howell and M. E. Jensen, (2011).Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management 98: 899-920 doi:10.1016/j.agwat.2010.12.015
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., and Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. Journal of Hydrology, 212–213, 198–212. doi:10.1016/S0022-1694(98)00253-4
Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229, 87–100. doi:10.1016/S0022-1694(99)00202-4
Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., and Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering, 131(1), 85-93.‏ doi:10.1061/(ASCE)0733-9437(2005)131:1(85)
Eilami, B., Ghahari, Gh., Hashemi, H., Hosseinimarandi, H., Jowkar, L., Kamali, K., Karimi, A., Karimzadegan, H., Kowsar, S.A.,Mohammadnia, M., Mesbah, S.H., Mortazavi Jahromi, S.M., Nejabat, M., Nekooeian, Gh., Pakparvar, M., Rahbar, Gh., Rousta, M.J., Sarreshtehdari, A., and Soleimanpour, S.M.(2024). Lessons learn from fifty years of floodwater spreading studies for aquifer management. Soil Conservation and Watershed Management Institute. Tehran. 240 p. [In Persian].
El Tahir, M. E. H., Wenzhong, W., Xu, C.-Y., Youjing, Z., and Singh, V. P. (2012). Comparison of Methods for Estimation of Regional Actual Evapotranspiration in Data Scarce Regions: Blue Nile Region, Eastern Sudan. Journal of Hydrologic Engineering, 17 (4), 477-487. doi:10.1061/(ASCE)HE.1943-5584.0000429
Emadzadeh, M. (2007). Application of remote sensing in estimating water use efficiency at the watershed scale (Case study in the Qareh Su watershed). Master’s thesis, Sharif University of Technology, Tehran.135p. [In Persian].
Estevez, E., Cabrera, M. C., Fernández-Vera, J. R., Hernandez-Moreno, J. M., Mendoza-Grimón, V., and Palacios-Díaz, M. P. (2010). Twenty-five years using reclaimed water to irrigate a golf course in Gran Canaria. Journal of Agricultural Research, 8(S2), 95-101. doi:10.5424/sjar/201008S2-1353
Fakhar, M. S., and Kavyani, A. (2024). Estimation of actual evapotranspiration using remote sensing data for improved water management. Journal of Water and Irigation Management, 14(3), 629-648. doi:10.22059/jwim.2024.369438.1123[In Persian].
Ghorbani, A., Faramarzi, M., Karami, J., Gholami, N., and Sobhani, B. (2015). Comparative evaluation of SEBAL and METRIC algorithms for evapotranspiration estimation: A case study of Malayer County. Spatial Planning and Development, 19(2), 153–184 https://civilica.com/doc/2151258 [In Persian].
Gong, L., Xu, C., Chen, D., Halldin, S., & Chen, Y. D. (2006). Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. Journal of Hydrology, 329(3-4), 620-629. doi:10.1016/j.jhydrol.2006.03.027
Jabloun, M., and Sahli, A. (2008). Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia. Agricultural Water Management, 95(6), 707-715. https://doi.org/10.1016/j.agwat.2008.01.009
Landeras, G., Ortiz-Barredo, A., and López, J. J. (2008). Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural Water Management, 95(5), 553-565. doi:10.1016/j.agwat.2007.12.011
Liu Q, Yasufuku N, Miao J, and Ren J. (2014). An approach for quick estimation of maximum height of capillary rise: Soils and Foundations, 54(6), 1241-1245 doi:10.1016/j.sandf.2014.11.017
Lu, J., Z.-L. Li, R. Tang, B.-H. Tang, H. (2013). Evaluating the SEBS-estimated evaporative fraction from MODIS data for a complex underlying surface. Hydrological Processes, 27: 3139-3149. doi:10.1002/hyp.9440
Maeda, E. E., Wiberg, D. A., and Pellikka, P. K. E. (2011). Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Applied Geography, 31 (1), 251-258 doi: 10.1016/j.apgeog.2010.05.011.
Mahmudzadeh, E., & Anvari, S. (2021). Sensitivity Analysis of SEBAL Algorithm for Estimating Agricultural Irrigation Requiremants. Watershed Manage Res. 12(24), 217-227 doi:10.52547/jwmr.12.24.217 [In Persian].
Mandal, N., & Chanda, K. (2023). Performance of machine learning algorithms for multi-step ahead prediction of reference evapotranspiration across various agro-climatic zones and cropping seasons. Journal of Hydrology, 13(3), 73–92. doi:10.52547/gisj.13.3.73
Mao, D., He, X., Wang, Z., Tian, Y., Xiang, H., Yu, H. (2019). Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. Journal of Cleaner Production, 212, 260-271.
Mokhtari, M. H., B. Ahmad, H. Hoveidi and I. Busu, (2013). Sensitivity Analysis of METRIC–Based Evapotranspiration Algorithm. International Journal of Environmental Research, 7: 407-422. doi: 10.22059/ijer.2013.620
Nandagiri, L., & Kovoor, G. M. (2006). Performance Evaluation of Reference Evapotranspiration Equations across a Range of Indian Climates. Journal of Irrigation and Drainage Engineering, 132(3), 238-252 doi:10.1061/(ASCE)0733-9437(2006)132:3(238)
Norman, J. M., Kustas, W. P., and Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3–4), 263–293 doi:10.1016/0168-1923(95)02265-Y
Omidvar, J., Nouri, S., Davari, K., and Farid-Hosseini, A. R. (2013). Estimating actual evapotranspiration using satellite imagery with SEBAL and METRIC algorithms. Journal of Irrigation and Water Engineering, 3(12), 11-22 [In Persian].doi: 73522_d9eb17f9dfdd75ee47804d2c5a6e681a.
Pakparvar, M., W. Cornelis , L. S. Pereira, D. Gabriels, H. Hosseinimarandi et al., (2014). Remote sensing estimation of actual evapotranspiration and crop coefficients for a multiple land use arid landscape of southern Iran with limited available data. J. of Hydroinformatics 16: 1441-1460. doi:org/10.2166/hydro.2014.140
Pereira, L. S., R. Allen, M. Smiith and D. Raes, (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147: 4-20 doi:10.1016/j.agwat.2014.07.031.
Piri, H., and Poozan, M. (2019). Evaluation of 24 models of reference evapotranspiration in different climates of Iran. Journal of Ecohydrology, 6(3), 611–622.doi: 10.22059/ije.2019.277302.1065 [In Persian].
Raeesi, M., Haghighizadeh, A., Nozari, H., Vazinivand, H. (2025). Estimating actual evapotranspiration of irrigated crops and orchards in Nahavand city using the SEBAL algorithm. Modeling and Management of Water and Soil, 5(1), 213-230. doi:10.22098/mmws.2024.15091.1462 [In Persian].
Rawat, K. S., Singh, S. K., Bala, A., and Szabó, S. (2019). Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agricultural Water Management, 216, 1-10.
Rostamizad, G. , Pakparvar, M. , abdinejhad, P. , Abdollahi, Z. and khalafi, J. (2024). Estimating the amount of evapotranspiration in the area affected by flood spreading using METRIC algorithm. Watershed Engineering and Management16(1), 154-169. doi: 10.22092/ijwmse.2023.361980.2016 [In Persian].
Salari, H., Kashki, A., Karami, M and Zandi, R. (2023). Evaluation of climate change impacts on water requirement of cotton crop in Razavi Khorasan Province. Journal of Climatology Research, 14(53), 163–172 https://clima.irimo.ir/article_180131
[In Persian].
Senay, G. B., Budde, M. E., and Verdin, J. P. (2011). Operational evapotranspiration mapping using remote sensing and weather data: A case study of the conterminous United States. Journal of the American Water Resources Association, 47(3), 606–617. doi:10.1111/j.1752-1688.2011.00553.x
Su, Z., W. Timmermans, A. Gieske, L. Jia, J. A. Elbers et al., (2008). Quantification of land–atmosphere exchanges of water, energy and carbon dioxide in space and time over the heterogeneous Barrax site. International Journal of Remote Sensing, 29: 5215-5235. doi:10.1080/01431160802326099
Tasumi M, (2019). Estimating evapotranspiration using METRIC model and Landsat data for better understandings of regional hydrology in the western Urmia Lake Basin: Agricultural Water Management, 226,. 105805 doi:10.1016/j.agwat.2019.105805
Thenkabail, P. S., Smith, R. B., and De Pauw, E. (2007). Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components: Transpiration and soil evaporation. Agricultural and Forest Meteorology, 143(3–4), 131–145. doi:10.1016/j.agrformet.2006.12.003
Tofigh, S., Rahimi, D., and Zakerinejad, R. (2020). A comparison of actual evapotranspiration estimates based on remote sensing approaches with a classical climate data driven method. Acta Universitatis Carolinae Geographica, 55(2), 1-18. doi:10.14712/23361980.2020.12
Wang, J., Sammis, T. W., and Gutschick, V. P. (2009). Sensitivity analysis of the surface energy balance algorithm for land (SEBAL). Transactions of the ASABE, 52(5).
Yang, Y., Zhou, X., Yang, Y., Bi, S., Yang, X., and Li Liu, D. (2018). Evaluating water-saving efficiency of plastic mulching in Northwest China using remote sensing and SEBAL. Agricultural Water Management, 209, 240-248. doi:10.1016/j.agwat.2018.07.011
Yang , Y. (2022). Evaluation of SEBAL model for estimating actual evapotranspiration using remote sensing data in arid regions. Remote Sensing Applications: Society and Environment, 25, 100692.
Yousefi, E., Sayadi, M.S., Chamanehpour, E. (2022). Google Earth Engine platform to calculate the hydrometeorology and hydrological water balance of wetlands in arid areas and predict future changes. Journal of Aplide Research in Water and Watershed, 9 (2022) 52-68
Zare khormizie, H., Tavili, A., Ghafarian Malmiri, H. R. (2021). Estimating actual evapotranspiration using the SEBAL algorithm and comparing it to the improved FAO 56 standardized evapotranspiration with the NDVI-KC relationship. Remote Sensing and GIS of Iran, 13(3), 73-92.  doi:10.52547/gisj.13.3.73 [In Persian].
ZareKhurmizie, A., and Ghafarian Malmiri, H. R. (2020). Effect of height and temperature on plant phenological processes using harmonic analysis of MODIS NDVI time series (Case study: Shirkouh, Yazd province). Iranian Journal of Remote Sensing and GIS, 12(3), 1–22. doi: 10.52547/gisj.12.3.1 [In Persian].