Spatiotemporal variations analysis of water yield ecosystem service in the Hyrcanian region of northern Iran using the InVEST model

Document Type : Research/Original/Regular Article

Authors

1 PhD of Watershed Management Sciences and Engineering, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

2 Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

3 Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

4 Associate Professor, Department of the Environment, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran

Abstract

Extended Abstract

Introduction

Ecosystems provide a wide range of benefits known as ecosystem services, which play a vital role in human livelihoods and environmental sustainability. Among these, hydrological services, particularly water yield, are essential in maintaining water security, supporting downstream ecosystems, and regulating hydrological processes. Understanding temporal and spatial variations in water yield is increasingly important in the context of land use change and climate variability. In this regard, modeling tools such as the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) have proven effective in quantifying and mapping ecosystem services, especially water yield, by integrating spatial data on land use, climate, topography, and soil properties. The rationale behind this study stems from the limited research conducted on the long-term and spatial dynamics of water yield ecosystem services in Iran, particularly in ecologically sensitive and hydrologically significant regions such as the Hyrcanian forests. Despite their rich biodiversity and critical ecological functions, these regions have received insufficient attention in ecosystem service assessments using robust modeling frameworks. Therefore, this research aims to evaluate the spatiotemporal variations in water yield services in the Talar Watershed, a representative region within the Hyrcanian forest, over a 25-year period using the InVEST model.



Materials and Methods

The Talar Watershed, located in Mazandaran Province in northern Iran, spans approximately 1,764 km² across the northern slopes of the Alborz Mountains. The elevation in the watershed ranges from 216 to nearly 3,980 meters, contributing to diverse microclimates and land uses. The region has a semi-humid, Mediterranean-like climate influenced by the Caspian Sea, with an average annual precipitation of 547 mm and an average annual evapotranspiration of 446 mm. The InVEST water yield model was employed to estimate annual water production based on biophysical and climatic variables for the years 1989, 2000, and 2014. The input data incuding climatic variables (precipitation, reference evapotranspiration), land use/land cover, digital elevation model (DEM), plant-available water content, root-restricting layer depth, biophysical factors (land cover condition, root depth, and evapotranspiration coefficient), seasonality parameter, watershed boundaries, and water demand for each land use class were prepared for the model in the selected years 1989, 2000, and 2014. In this regards, Annual average precipitation across the study area was estimated based on elevation gradients for the selected years. Reference evapotranspiration was calculated using the modified Hargreaves equation for studied years. Land use/land cover data were derived from Landsat satellite imagery using a supervised classification approach based on the Support Vector Machine (SVM) method in the research years. Plant-available water content was determined using soil texture characteristics and calculated as the volumetric difference between field capacity and permanent wilting point. The depth of the root-restricting layer was assumed equal to soil depth in each land unit, as no significant root-limiting layers were present. Root depth was assigned based on dominant vegetation types in each area. Land cover status was defined as either covered (1) or not covered (0), with all land use types except urban areas classified as having vegetative cover. The evapotranspiration coefficient, used to adjust reference evapotranspiration based on alfalfa as the reference crop in the InVEST model for different land use classes. The seasonality parameter, reflecting the predominantly winter rainfall pattern of the study area's climate, was set to 10.



Results and Discussion

Results indicate that the northern and central parts of the Talār watershed, dominated by dense forests and rangelands, produced the highest water volumes, supported by higher annual precipitation. Findings shows a 23% reduction in water provisioning service from 192.02 to 147.85 million m³ between 1989 and 2014. Validation with hydrometric data indicated a decreasing trend in the ratio of precipitation converted to water supply, likely caused by increased evapotranspiration and land use changes. Among land uses, rangelands produced the highest average annual water, while orchards produced the least. Per hectare, urban areas had the highest water production due to impervious surfaces increasing runoff, and forests had the lowest due to higher infiltration and evapotranspiration. The large extent of rangeland areas and their location in steep, slope regions, leading to reduced infiltration and increased runoff, can be considered the main reasons for the highest water yield observed in this land use type. Overall, protecting natural vegetation, especially in sloped, high-precipitation areas, is vital to maintaining watershed water production. Ecological land use planning is essential for sustainable water and soil resource management in the region.



Conclusions

From a policy and planning perspective, this research underscores the utility of the InVEST model as a decision-support tool for watershed managers and land use planners. The ability to quantify and map water yield variations across time provides valuable insights for identifying priority areas for conservation, designing payment for ecosystem services schemes, and implementing adaptive land management strategies. The model’s outputs can also be integrated into regional climate adaptation frameworks, particularly in semi-humid mountainous regions vulnerable to rainfall variability and water stress. Furthermore, the spatially explicit results facilitate cross-sectoral coordination among forestry, agriculture, and urban planning agencies by identifying synergies and tradeoffs in ecosystem service provision. Finally, this study contributes to the growing body of ecosystem service research in the Middle East and offers a replicable methodology for analyzing other hydrologically sensitive regions under environmental pressure. In conclusion, this research provides a comprehensive and long-term assessment of water yield ecosystem service dynamics in a critical ecological zone of Iran. The combination of empirical data, spatial analysis, and process-based modeling offers a robust foundation for evidence-based decision-making. As land use change and climate variability continue to reshape hydrological processes, integrating ecosystem service assessments into regional planning will be essential for achieving sustainable water resource management and ecological resilience in the Hyrcanian region and beyond.

Keywords

Main Subjects


منابع
اداره کل منابع طبیعی و آبخیزداری مازندران. ۱۳۸۰. مطالعه جامع تفصیلی-اجرایی آبخیزداری حوزه آبخیز تالار. اداره کل منابع طبیعی و مدیریت حوضه آبخیز استان مازندران.
اسدالهی، زهرا و کشتکار، مصطفی (1403). ارزیابی تعادل مکانی عرضه و تقاضای خدمات هیدرولوژیکی اکوسیستم در حوضه‌های آبخیز نیمه خشک ایران (مطالعه موردی: حوضه آبخیز کرخه). تحقیقات منابع آب ایران، 20(3): 17-1.doi: 10.22034/iwrr.2024.459671.2760
جهانداری، جاوید، حجازی، رخشاد، جوزی، سیّد علی و مرادی، عباس (1401). اثرات توسعه شهری بر الگوهای مکانی، زمانی خدمت اکوسیستمی ذخیره کربن در حوزه آبخیز بندرعباس با نرم‌افزار InVEST. مدل سازی و مدیریت آب و خاک، 2(4), 91-106. doi: 10.22098/mmws.2022.11069.1097
حقدادی، مهرناز، حشمتی، غلامعلی و عظیمی، مژگان سادات (1397). بررسی خدمت اکوسیستم تولید آب با استفاده از نرم‌افزار InVEST (مطالعه موردی: حوزه آبخیز دلیچای). پژوهش‌های حفاظت آب و خاک، 25(4): 290-275.doi: 10.22069/jwsc.2018.13352.2800
حمدی احمدآباد، یاسر، لیاقت، عبدالمجید، رسول‌زاده، علی و قادرپور، رسول (1398). بررسی روند سرانه مصرف آب در ایران براساس رژیم غذایی دو دهه گذشت. تحقیقات آب و خاک ایران، 50(1): 87-77. doi: 10.22059/ijswr.2018.246084.667795
خوشخو، یونس، و نیک‌مهر، سامان (1400). به‌کارگیری دمای سطح زمین مستخرج از تصاویر ماهواره‌ای به‌منظور پهنه‌بندی تبخیر و تعرق مرجع. محیط‌ زیست و مهندسی آب، 7(4)، 708-722. doi: 10.22034/jewe.2021.293156.1591
طاهری محمدآبادی، نیکو، زارع چاهوکی، محمدعلی، آذرنیوند، حسین (1404). مدل‌سازی تولید آب زیست‌بوم مراتع حوزه آبخیز دریان سمنان با استفاده از نرم‌افزار InVEST. مرتع، ۱۹ (۱)، 31-14. doi: 20.1001.1.20080891.1404.19.1.2.5
عرفانی، ملیحه، جورابیان شوشتری، شریف، اردکانی، طاهره و جهانی شکیب، فاطمه (1402). مدلسازی گرادیان مکانی خدمت اکوسیستمی تولید آب با ‏InVEST‏ در‎ ‎زیرحوزه‌های شمالی استان کرمان. مدیریت آب و آبیاری، 13(1): 81-63.doi: 10.22059/jwim.2023.349742.1024
قابل‌نظام، ائلناز، مصطفی‌زاده، رئوف، اسمعلی‌عوری، اباذر و حزباوی، زینب (1401). اهمیت خدمات اکوسیستم آبخیز با تاکید بر نقش تولید رواناب و کاهش فرسایش. انسان و محیط‌ زیست، 3(20): 155-137.
گلشن، محمد، اسمعلی عوری، اباذر و خسروی، خه‌بات (1397). ارزیابی حساسیت به سیل حوضه آبخیز تالار با استفاده از مدل نسبت فراوانی احتمالاتی. مخاطرات محیط طبیعی، 7(15): 16-1. doi: 10.22111/jneh.2017.3120
مصطفی‌زاده، رئوف، علائی، نازیلا و کاتب، فاطمه (1403). تعیین تغییرات بیلان آب و انرژی در مقیاس‌های مختلف زمانی با استفاده از منحنی بودیکو در آبخیز نیر، اردبیل. پژوهش های آبخیزداری، 37(2), 39-54. doi: 10.22092/wmrj.2023.362093.1538
یار احمدی، جلال و رحیمی خوب، علی (1393). اصلاح معادله هارگریوز با جایگزینی دمای سطح زمین بجای دمای هوا برای برآورد تبخیر و تعرق گیاه مرجع. پژوهش‌های حفاظت آب و خاک، 21(6): 245-239. doi: 20.1001.1.23222069.1393.21.6.13.8
 
 
Refrences
Asadolahi, Z. and Keshtkar, M. (2024). Assessing the Spatial Supply-Demand Balance of Hydrological Ecosystem Services in Iran's Semi-Arid Watersheds (Case Study: Karkheh Watershed). Iran-Water Resources Research, 20(3), 1-17. doi:10.22034/iwrr.2024.459671.2760 [In Persian]
Bai, Y., Ochuodho, T.O., Yang, J. 2019. Impact of Land Use and Climate Change On Water-Related Ecosystem Services in Kentucky, USA. Ecological Indicators, 102: 51-64. doi:10.1016/j.ecolind.2019.01.079
Belete, M., Deng, J., Wang, K., Zhou, M., Zhu, E., Shifaw, E., & Bayissa, Y. (2020). Evaluation of satellite rainfall products for modeling water yield over the source region of Blue Nile Basin. Science of the total environment, 708, 134834.
Bosch, J.M., Hewlett, J.D. 1982. A Review of Catchment Experiments to Determine the Effect of Vegetation Changes On Water Yield and Evapotranspiration. Journal of Hydrology, 55, 3-23. doi:10.1016/0022-1694(82)90117-2
Chen, X., Lin, S., Tian, J., Wang, Y., Ye, Y., Dong, S., ... & Zhu, L. (2024). Simulation study on water yield service flow based on the InVEST-Geoda-Gephi network: A case study on Wuyi Mountains, China. Ecological Indicators, 159, 111694. doi: 10.1016/j.ecolind.2024.111694
Costanza, R., d'Arge, R., De Groot, R., Faber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, Sh., O'Neill, R.V., Paruelo, J., Raskin, R.G., Van Den Belt, M., Sutton, P., 1997. The Value of the World's Ecosystem Services and Natural Capital. Nature, 387(6630), 253-260. doi: 10.1038/387253a0
El Jeitany, J., Pacetti, T., & Caporali, E. (2024). Evaluating climate change effects on hydrological functionality and water‐related ecosystem services. Ecohydrology, 17(4), e2557. doi: 10.1002/eco.2557
Erfani, M., Joorabian shooshtari, S. , Ardakani, T. and Jahanishakib, F. (2023). Spatial gradient modeling of water yield service using InVEST in northern sub-basins of ‎Kerman province. Water and Irrigation Management, 13(1), 63-81. doi: 10.22059/jwim.2023.349742.1024 [In Persian]
Fan, M., & Shibata, H. (2014). Spatial and temporal analysis of hydrological provision ecosystem services for watershed conservation planning of water resources. Water resources management, 28, 3619-3636. doi: 10.1007/s11269-014-0691-2
Fiener, P., Auerswald, K., & Van Oost, K. (2011). Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments- A review. Earth-Science Reviews, 106(1-2), 92-104. Doi:10.1016/j.earscirev.2011.01.004
Foley, J. A., Asner, G. P., Costa, M. H., Coe, M. T., DeFries, R., Gibbs, H. K., ... & Snyder, P. (2007). Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 5(1), 25-32. doi: 10.1890/1540-9295(2007)5[25:ARFDAL]2.0.CO;2
Gao, Z., Ju, X., Ding, J., Wang, Y., Shen, N., Zhang, X., & Li, M. (2025). Understanding water yield dynamics and drivers in the yellow river basin past trends, mechanisms, and future projections. Journal of Cleaner Production, 505, 145441 doi:10.1016/j.jclepro.2025.145441
Ghabelnezam, E., Mostafazadeh, R., Esmali Ouri, A., & Hazbavi, Z. (2022). The importance of watershed ecosystem services with emphasis on runoff yield and erosion control. Human and Environment, 62, 137-155. [In Persian]
Golshan, M. , Esmali Ouri, A. and Khosravi, K. (2018). Flood Susceptibility assessments Using Frequency Ratio model in Talar Watershed. Journal of Natural Environmental Hazards, 7(15), 1-16. doi: 10.22111/jneh.2017.3120 [In Persian]
Güneralp, B., Xu, X., & Lin, W. (2021). Infrastructure development with (out) ecological conservation: the Northern Forests in İstanbul. Regional Environmental Change, 21(3), 86. doi:10.1007/s10113-021-01807-w
Haghdadi, M. , Heshmati, G. A. and Azimi, M. S. (2018). Assessment of Water yield service on the basis of InVEST tool (case study: Delichai watershed). Journal of Water and Soil Conservation, 25(4), 275-290. doi: 10.22069/jwsc.2018.13352.2800 [In Persian]
Hamdi Ahmadabad, Y. , Liaghat, A. , Rasoulzadeh, A. and ghaderpour, R. (2019). Investigation of in the Capita Water Consumption Variation in Iran Based on the Past Two-Deca Diet. Iranian Journal of Soil and Water Research, 50(1), 77-87. doi: 10.22059/ijswr.2018.246084.667795 [In Persian]
Jafarzadeh, A.A., Mahdavi, A., FallahShamsi, R., Yousefpour, R., 2019. Annual Water Yield Estimation for Different Land Uses by GIS-Based InVEST Model (Case Study: Mish-khas Catchment, Ilam Province, Iran). Journal of Rangeland Science, 9(1), 1-12.
Jahandari, J. , Hejazi, R. , Jozi, S. A. and Moradi, A. (2022). Impacts of urban expansion on spatio-temporal patterns of carbon storage ecosystem service in Bandar Abbas Watershed using InVEST software. Water and Soil Management and Modelling, 2(4), 91-106. doi: 10.22098/mmws.2022.11069.1097
Khoshkhoo, Y. and Nikmehr, S. (2021). Application of Land Surface Temperature Extracted from Satellite Images for Zoning Reference Evapotranspiration. Environment and Water Engineering, 7(4), 708-722. doi: 10.22034/jewe.2021.293156.1591 [In Persian]
Lang, Y., Song, W., Zhang, Y., 2017. Responses of the Water-Yield Ecosystem Service to Climate and Land Use Change in Sancha River Basin, China. Physics and Chemistry of the Earth, Parts A/B/C,101, 102-111. doi:10.1016/j.pce.2017.06.003
Lian, X.H., Qi, Y., Wang, H.W., Zhang, J.L., Yang, R., 2020. Assessing Changes of Water Yield in Qinghai Lake Watershed of China. Water, 12 (1), 11.doi: 10.3390/w12010011
Millennium Ecosystem Assessment., Ecosystems and Human Well-being: Synthesis, 2005. Island Press, Washington, DC.
Mostafazadeh, R., Alaei, N. and Kateb, F. (2024). Determining Changes in Water and Energy Balance in Different Time Scales Using Budyko Curve in the Nir Watershed, Ardabil. Watershed Management Research, 37(2), 39-54. doi: 10.22092/wmrj.2023.362093.1538
DNRWM Mazandaran. 2001. Comprehensive detailed-executive study of watershed management in the Talar watershed. Department of Natural Resources and Watershed Management of Mazandaran Province [In Persian].
Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D., ... & Shaw, M. (2009). Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment, 7(1), 4-11. doi:10.1890/080023
Perry, T., Nawaz, R., 2008. An Investigation into The Extent and Impacts of Hard Surfacing of Domestic Gardens in an Area of Leeds, United Kingdom. Landscape and Urban Planning, 86 (1), 1-13. doi: 10.1016/j.landurbplan.2007.12.004
Petsch, D. K., Cionek, V. D. M., Thomaz, S. M., & Dos Santos, N. C. L. (2023). Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia, 850(12), 2563-2584. doi: 10.1007/s10750-022-04916-7
Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A.L., Rogers, L., Bierbower, W., Denu, D., Douglass, J., InVEST 3.5.0 User’s Guide, 2018. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
Taheri Mohammad Abadi N, Zare Chahouki M, Azarnivand H. (2025). Ecosystem Water Production Modeling of Rangeland in the Daryan Watershed, Semnan, Using InVEST Software. Journal of Rangeland, 19(1):14-31. doi: 20.1001.1.20080891.1404.19.1.2.5 [In Persian]
Talebi Khiavi, H., & Mostafazadeh, R. (2021). Land use change dynamics assessment in the Khiavchai region, the hillside of Sabalan mountainous area. Arabian Journal of Geosciences, 14, 1-15. doi: 10.1007/s12517-021-08690-z
Talebi Khiavi, H., Mostafazadeh, R., Asaadi, M. A., & Asbaghian Namini, S. K. (2022). Temporal land use change and its economic values under competing driving forces in a diverse land use configuration. Arabian Journal of Geosciences, 15(20), 1597. doi: 10.1007/s12517-022-10890-0
Tang, Z., Engel, B.A., Pijanowski, B.C., Lim, K.J., 2005. Forecasting Land Use Change and Its Environmental Impact at A Watershed Scale. Journal of Environmental Management, 76 (1), 35-45. doi: 10.1016/j.jenvman.2005.01.006
Van Den Bergh, T., Körner, C., Hiltbrunner, E., 2018. Alnus Shrub Expansion Increases Evapotranspiration in The Swiss Alps. Regional Environmental Change, 18 (5), 1375-1385. doi: 10.1007/s10113-017-1246-x
Van der Biest, K., Vrebos, D., Staes, J., Boerema, A., Bodí, M.B., Fransen, E., Meire, P., 2015. Evaluation of the Accuracy of Land-Use Based Ecosystem Service Assessments for Different Thematic Resolutions. Journal of environmental management, 156, 41-51. doi: 10.1016/j.jenvman.2015.03.018
Wang, S., Cai, T., Wen, Q., Yin, C., Han, J., & Zhang, Z. (2024). Spatiotemporal Dynamics of Ecosystem Water Yield Services and Responses to Future Land Use Scenarios in Henan Province, China. Water, 16(17), 2544. doi: 10.3390/w16172544
Yarahmadi, J. and Rahimikhoob, A. (2015). Adjustment of Hargreaves equation by replacing land surface temperature instead of air temperature for estimating reference crop evapotranspiration. Journal of Water and Soil Conservation, 21(6), 239-254. doi: 20.1001.1.23222069.1393.21.6.13.8 [In Persian]
Zabihi, M., Moradi, H., Gholamalifard, M., Khaledi Darvishan, A., & Fürst, C. (2020). Landscape management through change processes monitoring in Iran. Sustainability, 12(5), 1753. doi: 10.3390/su12051753
Zare, M., Samani, A.A.N., Mohammady, M., 2016. The Impact of Land Use Change On Runoff Generation in an Urbanizing Watershed in The North of Iran. Environmental Earth Sciences, 75 (18), 1279. doi: 10.1007/s12665-016-6058-7.
Zhang, X., Zhang, G., Long, X., Zhang, Q., Liu, D., Wu, H., & Li, S. (2021). Identifying the drivers of water yield ecosystem service: A case study in the Yangtze River Basin, China. Ecological Indicators, 132, 108304. doi: 10.1016/j.ecolind.2021.108304