Using Sentinel satellite images to study the June 2023 Flood and vegetation indices in the Germi and Ungut counties

Document Type : Research/Original/Regular Article

Authors

1 Associate Professor/Department of Range and Watershed Management, Faculty of Natural Resources, Water Management Research Center, University of Mohaghegh Ardabili, Ardabil, Iran

2 Former M.Sc. Student in Desertification, Department of Range and Watershed Management, Faculty of Desert Studies, Semnan University, Semnan

Abstract

Introduction

Flooding, one of the most common natural disasters, poses a serious threat to ecosystems and human safety, with factors such as heavy rainfall, rapid snowmelt, dam failures, and poor management of water, soil, and vegetation resources exacerbating its impacts. Over the past two decades, approximately 2.4 billion people have been affected by natural disasters, resulting in economic damages amounting to $2.97 trillion. Among these, human-related factors such as reduced permeability, construction near riverbanks, and altering water flow paths have played a greater role in intensifying flood damage than natural factors. Accurate monitoring of floods and assessing affected areas are of significant importance. Flood zoning is a practical tool that plays a crucial role in managerial planning. Today, the combined use of optical and radar imagery can provide more comprehensive information. This study aims to effectively utilize Sentinel-1 and Sentinel-2 satellite images in conjunction with the Google Earth Engine (GEE) platform for flood mapping and vegetation indices in the Germi and Ungut counties, which have been impacted by flood events in May and June 2023. This innovative approach enhances the accuracy and speed of flood detection and offers a scalable solution for managing flood risks in vulnerable areas. By leveraging the latest advancements in remote sensing and cloud computing, this research contributes to developing more resilient strategies against flooding and is essential for regions like Ardabil Province, which are prone to irregular and heavy rainfall.



Materials and Methods

In this study, various methods were employed to identify and analyze flood-affected areas using Sentinel-1 and Sentinel-2 satellite data. Initially, Synthetic Aperture Radar (SAR) images from Sentinel-1 in the form of GRD (Ground Range Detected) products were utilized, which can capture images in all weather conditions and at any time of day. These data were derived from the C-band and Interferometric Wide Swath (IW) mode for flood mapping. To reduce speckle noise, the Refined Lee filter was applied, which removed random noise while preserving structural details. A threshold of 1.25 was set for VV polarization (vertical transmit, vertical receive) to identify flood-prone areas, with pixels having VV values above this threshold considered as flooded regions. To avoid misinterpretation, areas with permanent water bodies were excluded using JRC Global Surface Water data. SAR images of Sentinel-1 taken before, during, and after the flood (between April 1 and August 20, 2023) were compared for change detection. Additionally, Sentinel-2 images were used to calculate the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) to assess the impact of vegetation variability from April 1, 2019, to August 20, 2023. These methods effectively identified flood-affected areas and flood impacts on the vegetation cover of the two study counties.



Results and Discussion

In May and June 2023, the Germi and Ungut counties witnessed unprecedented rainfall, which led to severe flooding. The results of the interpretation of Sentinel-1 SAR images showed that about 185.83 km2 were affected by flooding, which is equivalent to 9.01 % of the total study area. Before the flood (April-May 2023), the mean NDVI and EVI respectively, were 0.25 and 0.18, indicating a significant decrease in vegetation cover compared to the reference year (April-May 2019). This could be due to land use change, drought, gradual destruction of dense vegetation, or other environmental stresses before the flood. At the time of the flood (June 2023), the mean NDVI and EVI reached 0.22 and 0.15, respectively, which are the lowest levels recorded up to that time. Only seven percent of the area had healthy vegetation during this period. This decrease could be due to the inundation of plants, destruction due to the intensity of the flood flow, or the covering of the soil surface by sediments. After the flood (August 2023), a more severe decrease in vegetation status was observed. The mean NDVI decreased to 0.15 and EVI to 0.1, and only about 2% of the area remained with healthy vegetation. This decrease may be due to severe soil degradation, erosion of the fertile topsoil, reduced vegetation cover due to seasonal conditions in the area.





Conclusion

This study mapped the June 2023 flood and vegetation indices in two counties of Germi and Ungut, located in the northwest of Iran, using Sentinel-1 SAR and Sentinel-2 data. In adverse weather conditions, SAR technology is an effective tool for mapping and monitoring flood-prone areas. The combination of SAR data, the Refined Lee filter, and the GEE platform facilitates crisis management and mitigates flood impacts. SAR's ability to penetrate cloud cover and provide rapid data access plays a critical role in the swift detection of floods. Integrating this technology with early warning systems enables quicker responses to floods, reducing both human casualties and financial losses. Analysis of the June 2023 Flood occurred in the two counties of Germi and Ungut, with an area of 2064 km2, showed that about 185.83 km2 (equivalent to nine percent of the total area) were directly affected by the flood. From an environmental perspective, the analysis of NDVI and EVI indices in four time periods (one reference period in 2019 and three time periods related to before, during, and after the flood of 2023) indicates a sharp decrease in the density and extent of vegetation cover in the region. The amount of desirable vegetation cover decreased from approximately 269 km² in the pre-flood period to only 41 km² in the post-flood period, indicating the destructive impact of the flood on the region's ecological structure. These findings emphasize the need for integrated watershed management and strategic land-use planning. To enhance community resilience, it is recommended to prioritize and protect vulnerable areas through strategic policies. Utilizing these results can help reduce flood damage and save time and costs in foundational studies.

Keywords

Main Subjects


منابع
اصغری سراسکانرود، صیاد، اسفندیاری درآباد، فریبا، ملانوری، الهام و صفری، شیوا. (1401). بررسی رطوبت سطح خاک شهرستان اردبیل با استفاده داده‌های ماهواره‌ای لندست8 و سنتینل1، حفاظت منابع آب و خاک، 11(4)، 103-89. doi: 10.30495/WSRCJ.2022.20006
ایمانی، بهرام و پورخسروانی، محسن. (1396). تحلیل فضایی پهنه‌های مخاطره‌آمیز شهرستان اردبیل. جغرافیا و برنامه‌ریزی، 28(2)، 109- 128. doi: 10.22108/GEP.2017.98319.0
آقایاری، لیلا، اصغری سراسکانرود، صیاد و زینالی، بتول. (1403). شناسایی و پهنه‌بندی مناطق مستعد وقوع مخاطره سیلاب در شهرستان گرمی. جغرافیا و برنامه‌ریزی، doi: 10.22034/gp.2024.60493.3235
پیمان‌خواه، پیمان، عطارچی، سارا و محرمی، میثم. (1402). پایش سریع سیل با استفاده از تصاویر سنتینل 1 و لندست 8 (مطالعه موردی: رودخانه کشکان شهرستان پلدختر). نیوار، 47(122-123)، 82- 94. doi: 10.30467/NIVAR.2023.417413.1265
رحیمی، نفیسه و فرجی، عبدالله. (1404). تعیین پهنه‌ی سیلاب خرداد 1402 در استان اردبیل با داده‌های رادار SAR. نیوار، 49(128-129)، 34-45. doi: 10.30467/nivar.2024.457140.1290
سلیمانی، ساردو، فرشاد، رفیعی ساردویی، الهام، مصباح‌زاده، طیبه و آذره، علی. (1400). استفاده از تصاویر سنتینل1 جهت پایش خسارت سیلاب فروردین، جنوب استان کرمان براساس الگوریتم جنگل تصادفی. علوم و مهندسی آبخیزداری ایران، 15(53)، 23-32. doi: 20.1001.1.20089554.1400.15.53.4.8
شعبانی‌نیا، حسن، متولی، صدرالدین، جانباز قبادی، غلامرضا و حالدی، شهریار. (1399). برآورد مقادیر ارتفاع رواناب و دبی حداکثر سیلاب با استفاده از تلفیق مدل‌های اتومات سلولی و SCS (مطالعه موردی: حوضه آبخیز لاویج‌رود). مخاطرات محیط طبیعی، 9(24)، 79- 98. doi: 10.22111/JNEH.2020.29704.1515
عمادالدین، سمیه و محمدقاسمی، مسعود. (1400). پایش نقشه‌های گسترش سیلاب با استفاده از تصاویر راداری (SAR) (مطالعه موردی: سیل فروردین 1398، شهرستان آق‌قلا). پژوهش‌های تغییرات آب و هوایی، 2(6)، 79- 96. doi: 10.30488/ccr.2021.308697.1053
عینی، سعیده و سبحانی، بهروز. (1400). پایش خشک‌سالی طی دوره رشد پوشش مرتعی، استان اردبیل. تحقیقات کاربردی علوم جغرافیایی، 21(60)، 19-1. doi:10.52547/jgs.21.60.1
قهرمان، کاوه و زنگنه‌اسدی، محمدعلی. (1401). تعیین مناطق مستعد سیلاب با استفاده از تصاویر راداری، Sentinel-1 (مطالعه موردی، سیلاب فروردین 1398، رودخانه کشکان، استان لرستان). تحلیل فضایی مخاطرات محیطی، 9(3)، 103- 118. dor: 20.1001.1.24237892.1401.9.3.7.7
گنجی، کامران، قره‌چلو، سعید و احمدی، احمد. (1399). استخراج پهنه‌های سیلابی با استفاده از نسبت‌گیری طیفی داده‌های ماهواره‌ای لندست 8 و سنتینل 2 (مطالعه موردی: سیل آق‌قلا). ترویج و توسعه آبخیزداری، 8(31)، 42- 53.
مرکز آمار ایران. (1395). سرشماری عمومی نفوس و مسکن استان اردبیل. https://amar.org.ir/population-and-housing-census
ورامش، سعید؛ محترم عنبران، سهراب و روح‌نواز، زهرا. (1401). ارزیابی و پایش روند گسترش فیزیکی سی ساله شهر اردبیل با استفاده از تصاویر ماهواره‌ای. اطلاعات جغرافیایی «سپهر»، 31(123)، 153-139. doi:10.22131/sepehr.2022.699919
هوشیار، ساسان، دهباشی، وحید، محمدی، حمید، اسماعیل‌پورمقدم، هادی، سرگزی، علیرضا و کیخا، احمدعلی. (1404). اثر تغییرات اقلیم بر اقتصاد بخش کشاورزی ایران. مدیریت اکوسیستم‌های طبیعی، 3(4)، 49-40. doi: 10.22034/EMJ.2025.722981
 
 
References
Aghayary, L., Asghari Saraskanrood, S., & Zeinali, B. (2024). Identification and zoning of flood prone areas in Germi county. Journal of Geography and Planning, doi: 10.22034/gp.2024.60493.3235. [In Persian]
Alademomi, A. S., Okolie, C. J., Daramola, O. E., Agboola, R. O., & Salami, T. J. (2020). Assessing the relationship of LST, NDVI and EVI with land cover changes in the Lagos Lagoon environment. Quaestiones Geographicae, 39 (3), 87-109. doi:10.2478/quageo-2020-0025.
Argenti, F., Lapini, A., Bianchi, T., & Alparone, L. (2013). A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geoscience and Remote Sensing Magazine, 1(3), 6-35. doi: 10.1109/MGRS.2013.2277512
Asghari Saraskanrod, S., Esfandayari Darabad, F., Mollanouri, F., Safary, Sh. (2022). Investigation of soil surface moisture in Ardabil City using Landsat 8 and Sentile 1 satellite data. Journal of Water and Soil Resources Conservation, 11(4), 89-103. doi: 10.30495/WSRCJ.2022.20006 [In Persian]
Azizi, E., Nikoo, M R., Mostafazadeh, R., & Hazbavi, Z. (2023). Flood vulnerability analysis using different aggregation frameworks across watersheds of Ardabil province, northwestern Iran. International Journal of Disaster Risk Reduction, 91(2). https://doi.org/10.1016/j.ijdrr.2023.103680
Borah, S.B., Sivasankar, T., Ramya, M.N.S., & Raju, P.L.N. (2018). Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environmental Monitoring and Assessment, 190(9). doi:10.1007/s10661-018-6893-y
Clement, M.A., Kilsby, C.G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), https://doi.org/10.1111/jfr3.12303
Devries, B., Huang, C., Armston, J., Huang, W., Jones, J. W., & Lang, M. W. (2020). Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sensing of Environment, 240, 111664. doi:10.1016/j.rse.2020.111664
Dodangeh, P., Ebadi, H., & Kayani, A. (2021). Identification of flood areas with time series statistical calculations based on combining radar and optical data. Ecohydrology, 639-623, (3)8. doi: 10.22059/IJE.2021.322145.1495
Eini S., & Sobhani, S. (2021). Drought monitoring during growth rangeland coverage, Ardabil Province. Journal of Applied Researches in Geographical Sciences, 21(60), 1-19. doi:10.52547/jgs.21.60.1 [In Persian]
Emadodin, S. and Mohammad Ghasemi, M. (2021). Monitoring of flood expansion maps using radar images (SAR) (Case study: Flood in March 2019, Aq Qala city). Climate Change Research, 2(6), 79-96. doi: 10.30488/ccr.2021.308697.1053. [In Persian]
Fortes, A.A.; Hashimoto, M.; Udo, K.(2025). Application of remote sensing floodplain vegetation data in a dynamic roughness distributed runoff model. Remote Sensing, 17, 1672. https://doi.org/10.3390/rs17101672
Ganji, K., Gharechelou, S., & Ahmadi, A. (2021). Flooding zone extracting using spectrum proportionality of Sentinel-2 and Landsat-8 Satellite Data (Case study: Aq’Qala County Flooding). Extension and Development of Watershed Management, 8(31), 42-53. [In Persian]
Ghahraman, K., & Zanganeh Asadi, M. (2022). Determination of flood-prone areas using Sentinel-1 Radar images (Case study: Flood on March 2019, Kashkan River, Lorestan Province). Journal of Spatial Analysis Environmental Hazards, 9(3), 103-118. dor: 20.1001.1.24237892.1401.9.3.7.7. [In Persian]
Hamidi, E., Peter, B., Munoz, D., Moftakhari, H., & Moradkhani, H. (2023). Fast flood extent monitoring with SAR change detection using Google Earth Engine. IEEE Transactions on Geoscience and Remote Sensing, 61:1–19. https://doi.org/ 10. 1109/ TGRS. 2023. 32400 97.
Hinojo-Hinojo, C., & Goulden, M. L. (2020). Plant traits help explain the tight relationship between vegetation indices and gross primary production. Remote Sensing. 12 (9), 1391-1405.
Houshyar, S., Dehbashi, V., Mohammadi, H., Esmahilpormogadam, H., Sargazi, A., & Keikha, A. (2025). The effect of climate change on the economy of Iran's agricultural sector. Management of Natural Ecosystems, 3(4), 40-49. doi: 10.22034/emj.2025.722981 [In Persian]
Imani, B., & Pourkhosravani, M. (2017). Spatial analysis of hazardous areas in Ardabil City. Geography and Environmental Planning, 28(2), 109-128. doi: 10.22108/gep.2017.98319.0. [In Persian]
IPCC (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34, doi: 10.59327/IPCC/AR6-9789291691647.001
Lan, L., & Wang, X. (2025). Large-scale flood mapping using Sentinel-1 and Sentinel-2 imagery: Spatio-temporal analysis of the 23· 7 Haihe basin-wide extreme flood. Journal of Hydrology, 132777.
Lanfredi, M., Coppola, R., Simoniello, T., Coluzzi, R., Imbrenda, V., & Macchiato, M. (2015). Early identification of land degradation hotspots in complex bio-geographic regions. Remote Sensing, 7 (6), 8154-8179.
Liang, J., & Liu, D. (2020). A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm. Remote Sensing, 159(5), 53–62. DOI:10.1016/j.isprsjprs.2019.10.017
Lillesand, T., Kiefer, R.W., & Chipman, J. (2015). Remote sensing and image interpretation. 7th Edition, John Wiley & Sons.
Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors, 7 (11), 2636-2651. doi:10.3390/s7112636.
Peng, w., Wang J., Zhang, j., and Zhang, y.( 2020). Soil moisture estimation in the transition zone from the Chengdu Plain region to the Longmen Mountains by field measurements and LANDSAT 8 OLI/TIRSderived indices. Arabian Journal of Geosciences, 1-15, https://doi.org/10.1007/s12517-020-5152-z
Peng, X., Chen, S., Miao, Z., Xu, Y., Ye, M., & Lu, P. (2025). Automatic flood monitoring method with SAR and optical data using Google Earth Engine. Water, 17, 177. doi:10.3390/w17020177
Petropoulos, G. P., Georgiadi, A., & Kalogeropoulos, K. (2024). Leveraging Sentinel-2 and Geographical Information Systems in Mapping Flooded Regions around the Sesia River, Piedmont, Italy. GeoHazards, 5(2), 485-503.
Peymankhah, P., Attarchi, S., & Moharrami, M. (2023). Rapid flood monitoring using Sentinel-1 and Landsat-8 images (Case study: Kashkan River, Poldakhter City). Nivar, 47(122-123), 82-94. doi: 10.30467/nivar.2023.417413.1265. [In Persian]
Rahimi, N., & Faraji, A. (2025). Determining the flood zone of Khordad 1402 in Ardabil province with SAR radar data. Nivar, 49(128-129), 34-45. doi: 10.30467/nivar.2024.457140.1290. [In Persian]
Rowland Eteh, D., Emeka Egobueze, F., Paaru, M., Otutu, A., & Osondu, I. (2024). The impact of dam management and rainfall patterns on flooding in the Niger Delta: using Sentinel‑1 SAR data, Discover Water, https://doi.org/10.1007/s43832-024-00185-8
Shabaniniah, H., Motevalli, S., Janbaz Ghobadi, G., & Khaledi, S. (2020). Estimating of runoff height and flood maximum discharge using Cellular Automata and SCS models, (Case Study: Lavijrood watershed). Journal of Natural Environmental Hazards, 9(24), 79-98. doi: 10.22111/jneh.2020.29704.1515. [In Persian]
Singh, G., & Singh Rawat, K. (2024). Mapping flooded areas utilizing Google Earth Engine and open SAR data: A comprehensive approach for disaster respons. Discover Geoscience, 2(5), doi:10.1007/s44288-024-00006-4.
Soleimani Sardoo, F., Rafiei Sarooi, E., Mesbahzadeh, T., & Azareh, A. (2021). Utilizing Sentinel 1 images for monitoring damage of flood event in March 2020, the South of Kerman Province based on random forest algorithm. Iranian Journal of Watershed Management Science and Engineering, 15 (53), 23-32. doi: 20.1001.1.20089554.1400.15.53.4.8. [In Persian]
Statistics Center of Iran. (2011). General census of population and housing of Ardabil province. https://amar.org.ir/population-and-housing-census. [In Persian]
Tarpanelli, A., Mondini, A. C., & Camici, S. (2022). Effectiveness of Sentinel-1 and Sentinel-2 for flood detection assessment in Europe. Natural Hazards and Earth System Sciences, 22(8), 2473-2489. doi:10.5194/nhess-22-2473-2022
Townsend, PA. (2002). Estimating forest structure in wetlands using multitemporal SAR. Remote Sensing of Environment, 79(2–3), 288–304. doi:10.1016/S0034-4257(01)00280-2
United Nations International Strategy for Disaster Reduction (UNISDR). Sendai framework for disaster risk reduction 2015–2030. United Nations, 2015.
Varamesh, S., Mohtaram Anbaran, S., & Rouhnavaz, Z. (2022). Evaluation and monitoring of the thirty-year physical expansion process of Ardabil city using satellite images. Scientific- Research Quarterly of Geographical Data (SEPEHR), 31(123), 139-153. doi: 10.22131/sepehr.2022.699919 [In Persian]
Wu, C., Peng, D., Soudani, K., Siebicke, L., Gough, C. M., Arain, M. A., Bohrer, G., Lafleur, P. M., Peichl, M., Gonsamo, A., Xu, S., Fang, B., & Ge, Q. (2017). Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171-182. doi: 10.1016/j.agrformet.2016.11.193
Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., & Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234. DOI: 10.1109/TGRS.2015.2497902
Zheng, G., Allen, S.K., Bao, A., Ballesteros-Cánovas, J.A., Huss, M., Zhang, G., Li, J., Yuan, Y., Jiang, L., & Yu, T. (2021). Increasing risk of glacial lake outburst floods from future third pole deglaciation. Nature Climate Change, 11, 411–417. doi: 10.1038/s41558-021-01028-3