Comparative Performance Analysis of Google Earth Engine and SNAP Platforms for Estimating Water Quality Parameters in Minab Dam Reservoir Using Multi-Spectral Resolution Satellite Imagery

Document Type : Research/Original/Regular Article

Authors

1 M.Sc student in Watershed Management Science and Engineering, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources Engineering, University of Hormozgan, Bandar Abbas, Iran

2 Professor, Department of Natural Resources Engineering, Faculty of Agriculture and Natural Resources Engineering, University of Hormozgan, Bandar Abbas, Iran

Abstract

Abstract

Introduction

Access to clean freshwater has become a critical global challenge due to pollution from anthropogenic activities like urbanization and intensive agriculture. These pressures have significantly degraded lake water quality, increasing the risk of harmful algal blooms—a phenomenon that is exacerbated by climate change. Lakes, as multifunctional ecosystems supporting water supply, irrigation, and energy production, are particularly vulnerable to eutrophication. This process is primarily driven by excessive aquatic plant growth, quantified through chlorophyll-a (Chl-a) concentrations. As the dominant photosynthetic pigment in phytoplankton, Chl-a serves as a sensitive biomarker for nutrient loading and lake trophic status due to its rapid response to environmental shifts. Water surface temperature (SST) and suspended sediment concentration (SSC) are equally vital water quality parameters. SST profoundly influences aquatic ecosystems' biogeochemical cycles, while turbidity—a measure of light-scattering suspended particles—reflects sediment dynamics and anthropogenic pollution. Remote sensing technologies, particularly satellite platforms like Sentinel-2, have emerged as powerful tools for synoptic water quality monitoring. This study evaluates the efficacy of Google Earth Engine (GEE) and Sentinel Application Platform (SNAP) in analyzing temporal variations of water quality parameters (Chl-a, SST, SSC) in Minab Dam Lake (2016–2023). The investigation further explores interrelationships between these variables and environmental drivers.



Materials and Methods

This study evaluated the water quality of Minab Esteghlal Dam Lake using remote sensing techniques, integrating field data from the Hormozgan Regional Water Department with multi-sensor satellite imagery. Sentinel-2 MSI Level-2A and Landsat-8 OLI/TIRS Collection 2 Level-2 data were acquired from the Copernicus Open Access Hub (2016–2023) to analyze Chl-a, SST, and SSC. The Normalized Difference Water Index (NDWI) was applied to delineate water boundaries, followed by atmospheric correction of Sentinel-2 data using SEN2COR. The GEE facilitated large-scale temporal processing, while the SNAP enabled advanced spectral analysis, including Chl-a estimation via OC2/OC3 algorithms and SSC quantification using red-band reflectance. Landsat-8 thermal bands were used to derive SST through radiative transfer equations. Final outputs in TIFF format were visualized in ArcGIS with standardized symbology, ensuring accurate spatial representation of water quality dynamics. This integrated approach leveraged cloud-based (GEE) and desktop (SNAP/ArcGIS) platforms to optimize efficiency and precision in monitoring the lake’s ecological parameters.



Results and Discussion

The analysis demonstrated a declining trend in Minab Dam Lake's water quality during the study period. Both SNAP and GEE platforms consistently revealed seasonal Chl-a dynamics, with concentrations peaking in spring/summer (attributed to elevated SST and optimal phytoplankton growth conditions) and declining in autumn/winter (due to reduced temperature and solar radiation). SNAP exhibited superior performance in atmospheric correction and spatial detail extraction, achieving 15-20% higher accuracy than GEE in Chl-a quantification, with lower estimation errors (RMSE: 3.14 vs. GEE's 4.44). This precision stems from SNAP's advanced algorithmic parameter customization capabilities, making it ideal for localized, high-resolution studies. Conversely, GEE excelled in large-scale, long-term trend analysis, processing big data 40% faster through its cloud-computing infrastructure and machine learning tools, albeit with marginally reduced precision.

The SST-Chl-a relationship exhibited nonlinear seasonality, with stronger correlations observed during warmer months. While SSC generally suppressed Chl-a concentrations through light attenuation, episodic nutrient inputs from sediment loads occasionally triggered transient phytoplankton blooms. Notably, SSC impacts were more pronounced during colder months, exacerbating water quality degradation. These findings highlight the platforms' complementary strengths: SNAP for process-oriented studies requiring atmospheric precision, and GEE for synoptic, time-series investigations. The results underscore the importance of platform selection based on study objectives—whether high-precision local analysis or watershed-scale temporal monitoring.



Conclusion

This study demonstrates the effectiveness of remote sensing platforms in monitoring the water quality dynamics of Minab Dam Lake, revealing a clear declining trend over the 2016–2023 period. The seasonal variability of Chl-a concentrations—peaking in spring/summer due to warmer SST and favorable growth conditions, then declining in autumn/winter—was consistently captured by both SNAP and GEE. However, their complementary strengths highlight the importance of platform selection based on research objectives: SNAP proved superior for localized, high-precision analysis, excelling in atmospheric correction (15–20% greater accuracy) and spatial detail extraction. Its customizable algorithms make it ideal for mechanistic studies requiring fine-tuned parameter adjustments.

GEE enabled efficient large-scale and long-term assessments, reducing processing time by 40% through cloud-based workflows. While slightly less precise, its machine learning tools and data scalability are invaluable for trend analysis.

The complex interplay between environmental drivers—such as the nonlinear SST-Chl-a relationship and dual role of SSC as both light attenuators and nutrient sources—underscores the need for integrated monitoring approaches. These findings provide actionable insights for water resource management: SNAP can guide targeted mitigation of eutrophication hotspots, while GEE supports system-wide policy decisions. To enhance the monitoring and management of Minab Dam Lake, a hybrid approach combining high-precision SNAP analysis for localized eutrophication hotspots and GEE-based large-scale trend assessment is recommended. Targeted mitigation strategies, such as reducing agricultural runoff and controlling sediment inflow, should be prioritized in critical zones identified through SNAP’s detailed Chl-a mapping. Meanwhile, GEE’s rapid processing capabilities can support real-time policy adjustments by tracking seasonal water quality variations across the entire watershed. Additionally, integrating in-situ sensors with remote sensing data can improve predictive modeling, particularly under climate change-induced stressors. Finally, stakeholder collaboration between environmental agencies, local communities, and policymakers is essential to implement sustainable water management practices, ensuring long-term ecological balance in the lake ecosystem.

Keywords

Main Subjects


منابع
اکاتی، نرجس، عین‌الهی، فاطمه، و غفاری، مصطفی (1391). بررسی تغییرات فصلی میزان کلروفیل-a در آب مخازن چاه نیمه‌های سیستان. علوم و تکنولوژی محیط زیست، 21 (1)، 45-55. doi: 10.22034/JEST.2018.13749
ایمانی، سمیه، عبدل‌آبادی، حمید، و زارع‌رشکوئیه، مریم (1401). ارزیابی راهکارهای مدیریتی کنترل بار مواد مغذی در مقیاس حوضه‌ای؛ حوضة آبریز سد استقلال میناب. محیط شناسی، 48 (1)، 55-78. doi: 10.22059/jes.2022.335803.1008263
مشیدی، ضحی، و جهانگیر، محمدحسین (1400). ارزیابی کیفی منابع آب سطحی با استفاده از تصاویر ماهواره‌ای در مخزن سیمره. اکوهیدرولوژی، 8 (4)، 925-939. doi: 10.22059/ije.2021.328294.1530
 
References
Adjovu, G. E., Stephen, H., James, D., & Ahmad, S. (2023). Overview of the application of remote sensing in effective monitoring of waterquality parameters. Remote Sensing, 15(7), 1-35.‏ doi: 10.3390/rs15071938.
Ha, N. T. T., Thao, N.T.P., Koike, K., & Nhuan, M. T. (2017). Selecting the best band ratio to estimate chlorophyll-a concentration in a tropical freshwater lake using sentinel 2A images from a case study of Lake Ba Be (Northern Vietnam). ISPRS International Journal of Geo-Information, 6(9), 290. doi: 10.3390/ijgi6090290.
Haberman, J., & Sayer, C.D. (2008). Seasonal Variation in Chlorophyll-a Concentrations in Lakes: A Review of Potential Mechanisms." Hydrobiologia, 603(1), 63-77. doi: 10.10854/21546.2008.203145
Hegyi, A., & Agapiou, A. (2023). Rapid Assessment of 2022 Floods around the UNESCO Site of Mohenjo-Daro in Pakistan by Using Sentinel and Planet Labs Missions.doi:10.3390/su15032084
Hernández-Cruz, B., Vasquez-Ortiz, M., Canet, C., & Prado-Molina, J. (2019). Algorithm to calculate suspended sediment concentration using Landsat 8 imagery. Applied Ecology & Environmental Research, 17(3), 18-29. doi: 10.2166/hydro.2023.137
Imani, S., Abdolabadi, H., & Zareh Rashquoieh, M. (2022). Assessment of Basin-Scaled Nutrient Load Management Strategies; Minab Dam Watershed. Journal of Environmental Studies, 48(1), 55-78. doi: 10.22059/jes.2022.335803.1008263 [In Persian]
Jang, W., Kim, J., Kim, J.H., Shin, J.K., Chon, K., Kang, E.T., Park, Y., & Kim, S. (2024). Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sensing, 16(2), 315.‏ doi: 10.3390/rs16020315
Johansen, R.A., Reif, M.K., Saltus, C.L., & Pokrzywinski, K.L. (2024). A Broadscale Assessment of Sentinel-2 Imagery and the Google Earth Engine for the Nationwide Mapping of Chlorophyll a. Sustainability, 16(5), 2090.‏ doi: 10.3390/su16052090
Karimi, B., Hashemi, S.H., & Aghighi, H. (2024). Application of Landsat-8 and Sentinel-2 for retrieval of chlorophyll-a in a shallow freshwater lake. Advances in Space Research, 74(1), 117-129.‏ doi: 10.1016/j.asr.2024.03.056
Kong, X., Li, Y., Wang, L., & Liu, H. (2024). Lake Surface Temperature Retrieval Study Based on Landsat 8 Satellite Imagery—A Case Study of Poyang Lake. Atmosphere, 15(4), 428.‏ doi:10.3390/atmos15040428
Korver, M.C., Lehner, B., Cardille, J.A., & Carrea, L. (2024). Surface water temperature observations and ice phenology estimations for 1.4 million lakes globally. Remote Sensing of Environment, 308, 114-124.‏ doi: 10.1016/j.rse.2024.114164
Kowe, P., Ncube, E., Magidi, J., Ndambuki, J.M., Rwasoka, D.T., Gumindoga, W., Maviza, A., De jesus Paulo Mavaringana, M., & Kakanda, E.T. (2023). Spatial-temporal variability analysis of water quality using remote sensing data: A case study of Lake Manyame. Scientific African, 21, e01877.‏ doi: 10.1016/j.sciaf.2023.e01877
Li, H., Li, X., Song, D., Nie, J., & Liang, S. (2024a). Prediction on daily spatial distribution of chlorophyll-a in coastal seas using a synthetic method of remote sensing, machine learning and numerical modeling. Science of The Total Environment, 910, 168642. ‏doi: 10.1016/j.scitotenv.2023.168642
Li, H., Somogyi, B., & Tóth, V. (2024b). Exploring spatiotemporal features of surface water temperature for Lake Balaton in the 21st century based on Google Earth Engine. Journal of Hydrology, 640, 131-146.‏ doi: 10.1016/j.jhydrol.2024.131672
 Li, Y., Chen, J., Ma, Q., Zhang, H. K., & Liu, J. (2018). Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6), 1997-2021. doi: 10.1109/JSTARS.2018.2835823
Li, Y., Zhou, Z., Kong, J., Wen, C., Li, S., Zhang, Y., Xie, J., & Wang, C. (2022). Monitoring Chlorophyll-a concentration in karst plateau lakes using Sentinel 2 imagery from a case study of pingzhai reservoir in Guizhou, China. European Journal of Remote Sensing, 55(1), 1-19. doi: 10.1080/22797254.2022.2079565
Lioumbas, J., Christodoulou, A., Katsiapi, M., Xanthopoulou, N., Stournara, P., Spahos, T., Seretoudi, G., Mentes, A., & Theodoridou, N. (2023). Satellite remote sensing to improve source water quality monitoring: A water utility's perspective. Remote Sensing Applications: Society and Environment, 32, 101042.‏ doi: 10.1016/j.rsase.2023.101042
Liu, J., Qiu, Z., Feng, J., Wong, K.P., Tsou, J.Y., Wang, Y., & Zhang, Y. (2023). Monitoring Total Suspended Solids and Chlorophyll-a Concentrations in Turbid Waters: A Case Study of the Pearl River Estuary and Coast Using Machine Learning. Remote Sensing, 15(23), 5559. doi: 10.3390/rs15235559
Meimandi, J.B., Bazrafshan, O., Esmaeilpour, Y., Zamani, H., & Shekari, M. (2024). Risk assessment of meteo-groundwater drought using copula approach in the arid region. Stochastic Environmental Research and Risk Assessment, 38(4), 1523-1540. doi: 10.1007/s00477-023-02641-8
Moshayedi, Z., & Jahangir, M.H. (2021). Qualitative evaluation of surface water resources using satellite images in Seymareh dam reservoir. Journal of Ecohydrology, 8(4), 925-939. doi: 10.22059/ije.2021.328294.1530 [In Persian]
Nazeer, M., Ilori, C.O., Bilal, M., Nichol, J.E., Wu, W., Qiu, Z., & Gayene, B.K. (2021). Evaluation of atmospheric correction methods for low to high resolutions satellite remote sensing data. Atmospheric Research, 249, 105308. doi: 10.1016/j.atmosres.2020.105308
Nezlin, N.P. (2008). Seasonal and interannual variability of remotely sensed chlorophyll. Environmental Chemistry, 5, 333–349. doi: 10.1007/698_5_063
Obata, K., & Yoshioka, H. (2024). Unmixing-based radiometric and spectral harmonization for consistency of multi-sensor reflectance time-series data. ISPRS Journal of Photogrammetry and Remote Sensing, 212, 396-411. doi: 10.1016/j.isprsjprs.2024.05.016
Okati, N., Eynollahi, F., & Ghafari, M. (2019). Study of Seasonal Changes in Chlorophyll a Concentration in the Water of Chahnimeh Reservoirs in Sistan. Journal of environmental Science and Technology, 21(1), 45-55. doi: 10.1014/jest.2019.1874 [In Persian]
Ondrusek, M., Stengel, E., Kinkade, C. S., Vogel, R. L., Keegstra, P., Hunter, C., & Kim, C. (2012). The development of a new optical total suspended matter algorithm for the Chesapeake Bay. Remote Sensing of Environment, 119, 243-254.doi:10.1016/j.rse.2011.12.018
Parra, L., Ahmad, A., Sendra, S., Lloret, J., & Lorenz, P. (2024). Combination of Machine Learning and RGB Sensors to Quantify and Classify Water Turbidity. Chemosensors, 12(3), 34.‏ doi:3390/chemosensors12030034
Petus, C., Chust, G., Gohin, F., Doxaran, D., Froidefond, J.M., & Sagarminaga, Y. (2010). Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Continental Shelf Research, 30, 379–392. doi:10.1016/j.csr.2009.12.007
 Qiao, S., Yang, Y., Xu, B., Yang, Y., Zhu, M., Li, F., & Yu, H. (2024). How the Water-Sediment Regulation Scheme in the Yellow River affected the estuary ecosystem in the last 10 years?. Science of the Total Environment, 927, 172-185. doi:10.1016/j.scitotenv.2024.172002
Reynolds, C.S. (2006). The Ecology of Phytoplankton. Cambridge University Press. doi: 10.1017/CBO9780511542145
Salls, W.B., Schaeffer, B.A., Pahlevan, N., Coffer, M.M., Seegers, B.N., Werdell, P.J., Ferriby, H., Stumpf, R.P., Binding, C.E., & Keith, D.J. (2024). Expanding the Application of Sentinel-2 Chlorophyll Monitoring across United States Lakes. Remote Sensing, 16(11), 1977. doi:10.3390/rs16111977
Seenipandi, K., Ramachandran, K.K., Ghadei, P., & Shekhar, S. (2021). Seasonal variability of sea surface temperature in Southern Indian coastal water using Landsat 8 OLI/TIRS images. In Remote Sensing of Ocean and Coastal Environments (pp. 277-295). Elsevier. doi:10.1016/B978-0-12-819604-5.00016-0
Sherjah, P., Saji Kumar, N., & Nowshaja, P. (2023). Quality monitoring of inland water bodies using Google Earth Enging. Journal of Hydroinformatics, 25(2), 432-450.doi:10.2166/hydro.2023.137
Shi, X., Gu, L., Li, X., Jiang, T., & Gao, T., (2024). Automated spectral transfer learning strategy for semi-supervised regression on Chlorophyll-a retrievals with Sentinel-2 imagery. International Journal of Digital Earth, 17(1), 23-38.‏ doi:10.1080/17538947.2024.2313856
Singh, R., Saritha, V., & Pande, C.B. (2024). Monitoring of wetland turbidity using multi-temporal Landsat-8 and Landsat-9 satellite imagery in the Bisalpur wetland, Rajasthan, India. Environmental Research, 241, 117638.‏ doi:10.1016/j.envres.2023.117638
Sola, I., García-Martín, A., Sandonís-Pozo, L., Álvarez-Mozos, J., Pérez-Cabello, F., González-Audícana, M., & Llovería, R.M. (2018). Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. International journal of applied earth observation and geoinformation73, 63-76.
Sommer, U., & Lengfellner, K. (2008). Climate Change and the Timing of Phytoplankton Blooming in Lakes: Effects of Temperature and Light. Aquatic Sciences, 70(2), 195-206 doi:10.1111/j.1365-2486.2008.01571.x
Wang, J., & Chen, X. (2024). A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data. Science of The Total Environment, 906, 167631.‏ doi:10.1016/j.scitotenv.2023.167631
Wang, L., Xu, M., Liu, Y., Liu, H., Beck, R., Reif, M., Emery, M., Young, J., & Wu, Q. (2020). Mapping freshwater chlorophyll-a concentrations at a regional scale integrating multi-sensor satellite observations with Google earth engine. Remote Sensing12(20), 32- 48. doi:10.3390/rs12203278
Wang, N., Luo, C., Wu, X., Chen, L., Ge, X., Huang, C., & Zhu, S. (2024). Effects of water temperature on growth of invasive Myriophyllum aquaticum species. Aquatic Invasions, 19(2), 153-167. doi:10.3391/ai.2024.19.2.124920
Wetzel, R.G., & Likens, G.E. (2000). Limnological Analysis. Springer. doi:10.1007/978-1-4757-3250-4
Zhao, D., Huang, J., Li, Z., Yu, G., & Shen, H. (2024). Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine. Science of The Total Environment, 912, 169152.‏ doi:10.1016/j.scitotenv.2023.169152.