Investigating the accumulation of salts in the soil under sugarcane cultivation in subsurface drip irrigation

Document Type : Research/Original/Regular Article

Authors

1 Irrigation and Drainage, Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Environmental Engineering, Department, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Iran

3 Institute of Technical and Engineering Research, Agricultural Research, Education and Extension Organization, Karaj, Iran

Abstract

Abstract

Introduction

Soil salinity can cause the destruction of arable land and sustainable production. Increasing the concentration of salts beyond the tolerance threshold causes irreversible physiological damage to the plant. The essence of soil salinity control measures is to regulate the movement of water and the transport of salts downward and out of the area of root development and to prevent their accumulation and transport to the soil surface due to evaporation and transpiration. Subsurface drip irrigation helps improve irrigation efficiency and reduce salinity. But careful design and management are essential to control water salinity. Considering the necessity of optimal irrigation water consumption and the development of subsurface drip irrigation in sugarcane fields in Khuzestan and the important role of soil salinity, studying changes in soil salts and their distribution in different irrigation methods and irrigation management in arid and semi-arid conditions is of great importance.Therefore, this study was conducted to investigate the effect of fertilization stages in subsurface irrigation on salt accumulation, sodium absorption ratio, ammonium and nitrate levels at different soil depths in the root development zone of sugarcane under a subsurface drip irrigation system.

Materials and Methods

The study was conducted in the Farabi Sugarcane Agro-Industry in during the agricultural year 2021-2022, in 35 km from the Ahvaz-Abadan road, east of the Karun River. Before cultivation, the physical and chemical properties of the soil were determined. After preparing and creating the furrow and ridge, sugarcane cuttings of the CP69-1062 variety were planted in two rows with a distance of 40 cm from each other. The Water tube was placed in the middle of two rows of cuttings. In-line dripper pipes with a diameter of 20 mm, dripper spacing of 50 cm, and dripper flow rate of 2.4 L/ha were installed at a depth of 20 cm below the soil surface. The average EC of irrigation water during the research period was 3.18 dS/m. Irrigation planning and water requirements for sugarcane plant were based on the five-year average of evapotranspiration, plant coefficients, and evaporation pan coefficient, taking into account the appropriate irrigation interval. Nitrat fertilization was done at a rate of 300 kg/ha, 25 kg/ha per time. Sampling to evaluate soil salt accumulation was carried out in six stages, a one week after fertilization. EC, pH, concentrations of calcium, sodium and magnesium, ammonium and nitrate dissolved in the saturated extract were measured. In order to investigate the effect of fertilization, a factorial split-plot experimental design with three replications was used. The fertilization stages treatment consisted of six stages (T1, T2, T3, T4, T5, and T6), while the soil depth treatment included five depths (0-20, 20-40, 40-60, 60-80 and 80-100). For analyze the results was used SAS ver 9.4 software, also using the LSD test method, the means of main effects and interaction effects were compared.

Results and Discussion

The results showed that the highest and lowest pH measured occurred in T3 and T4 respectively.The highest electrical conductivity of 4.55 dS/m in stage T4 and the lowest electrical conductivity of 3.01 dS/m was observed in stage T1.Also, the highest EC at a depth of 20 cm is equal to 5.34 dS/m.NH4+ was highest in T1 stage at all depths compared to other fertilization stages.The highest and lowest NO3- were measured in T5 and T2equal to 30.47mg/kg and 20.11mg/kg, respectively. The upward trend in nitrate in each stage compared to previous stages is likely due to increased nitrification that occurred from the application of each fertilizer stage. In depth of 20 cm, the concentration of NO3-soil, equal to 33.54 mg/kg, is higher than at other sampled depths. This trend could be due to the subsurface drip irrigation system, where the depth of penetration of the moisture bulb is less than this range. The interaction between fertilization stages and sampling depth showed that the highest SAR was at the time of fertilization stage T4 and a depth of 20 cm from the soil surface (11.31) and the lowest SAR was at the time of fertilization stages T1 and T6 and a depth of 80 cm (4.66 and 4.57, respectively). In this study, the increase in sodium absorption ratio (SAR) was not affected by the quality of irrigation water, but rather by the type of irrigation method (subsurface drip) and the depth of drip installation.

Conclusion

The results of this study showed that nitrogen fertilizer application had a variable effect on soil pH during the period. This process could be due to microbial activity, mineralization, and nitrification processes. The highest pH measured was in the third stage and the lowest in the fourth stage of fertilization. The highest soil salinity is due to the interaction between fertilization stages and soil depth at the fourth fertilization stage and a depth of 20 cm, which has increased by 54.7 percent compared to the same depth in the first stage. The highest ammonium concentration was in the first stage, which was 28.3 percent higher than the lowest concentration measured in the second stage. Also soil nitrate concentration showed that the highest and lowest concentrations were in the fifth and second stages, respectively, with a difference of 67.15 percent between them. Totally, the concentration of ammonium and nitrate in the soil depth has been decreasing. The behavior of the exchange sodium adsorption ratio is similar to electrical conductivity and increased during the study, which was intensified at the soil surface due to the depth of soil moisture penetration and irrigation method. Therefore, the results of this study indicate that in order to manage salts and prevent their accumulation at the soil surface in sugarcane cultivation areas in Khuzestan using subsurface drip irrigation, it is recommended to consider flow rate and installation depth of the drippers should be considered further.

Keywords

Main Subjects


منابع
افشاری‌نیا، مهدیه، و پناهی، فاطمه (1400). تاثیر خشک‌سالی اقلیمی بر شوری خاک سطحی در دشت کاشان. مدل‌سازی و مدیریت آب و خاک، 1(2)، 46-36. doi: 10.22098/mmws.2021.8982.1018
جهان‌تیغ، منصور، جهان‌تیغ، معین، دهمرده، خداداد، و بیات، رضا (1402). تاثیر تغییرات شوری و روش آبیاری بر رشد محصولات گل محمدی و چای‌ترش در دشت سیستان. مدلسازی و مدیریت آب و خاک، 3(4)، 191-181. doi: 10.22098/mmws.2023.12061.1199
زنگنه یوسف آبادی، الهام، هوشمند، عبدالرحیم، ناصری، عبدعلی، برومند نسب، سعید و پرویزی، مسعود (1400). تأثیر مدیریت‌های مختلف آبیاری قطره‌ای زیرسطحی بر بهره‌وری آب آبیاری، عملکرد و اجزای عملکرد نیشکر رقم CP69-1062. علوم و مهندسی آبیاری. 44(1)، 15-1. doi: 10.22055/jise.2018.25258.1747
شینی‌دشتگل، علی (1398). اصول مدیریت کاربردی آب در نیشکر. چاپ دوم، انتشارات مؤسسة تحقیقات و اموزش توسعه نیشکر و صنایع جانبی خوزستان، 168 صفحه.
شینی‌دشتگل، علی (1399). اثر فواصل و اعماق مختلف کارگذاری قطره‌چکان‌های تنظیم‌کننده فشار در آبیاری قطره‌ای زیرسطحی بر روی توزیع رطوبت، بهره‌وری آب و عملکرد کمی و کیفی نیشکر در شرایط اقلیمی جنوب خوزستان. رساله دکتری. دانشگاه شهید چمران اهواز.
طاهری، مهدی، طاهری، میثم، عباسی، محمد، مصطفوی، کریم و واحدی، سمیرا (1395). بررسی الگوی توزیع شوری و سدیم خاک تحت آبیاری قطره‌ای سطحی و زیرسطحی در باغات زیتون. مهندسی آبیاری و آب ایران، 7(2)، 141-127.
عباسی، فریبرز (1400). فیزیک خاک پیشرفته. چاپ ششم، انتشارات دانشگاه تهران. 334 صفحه.
مرادی کشکولی، شهلا، هاشمی، رضا، خاشعی سیوکی، عباس، و شهیدی. علی (1395). شبیه‌سازی حرکت آب و انتقال املاح در خاک با استفاده از مدل هایدروس جهت تعیین عمق بهینه کارگذاری قطره‌چکان. آبیاری و زهکشی ایران. 1(10)، 103-94. https://civilica.com/doc/1208797/
نادری، نادر، و طباطبائیان، محسن (1403). ارزیابی عملکرد فنی و تغییرات شوری خاک در سامانه آبیاری قطره‌ای زیرسطحی باغ‌های پسته استان سمنان. پژوهش آب در کشاورزی، 38(2)، 139-148. doi: 10.22092/jwra.2024.364909.1031
غلامی شرفخانه، مهدی، ضیائی، علی‌نقی، ناقدی‌فر، سید محمد رضا، و اکبری، امیر (1403). بهبود برنامه‌ریزی سیستم آبیاری قطره‌ای با اندازه‌گیری میدانی و مدل‌سازی گیاهی. مدل‌سازی و مدیریت آب و خاک. 4(1)، 313-299. doi:10.22098/mmws.2023.12389.1236
 
References
Abbasi, F. (2020). Advanced Soil Physics. 6th Edition: Tehran University Press, 334 pages. [in Persian]
Afsharinia, M., & Panahi, F. (2021). Effect of climatic drought on surface soil salinity in Kashan Plain. Water and Soil Management and Modeling, 1(2), 36-46. doi: 10.22098/mmws.2021.8982.1018. [in Persian]
Amente, G., Baker, J M., & Reece, C.F. (2000). Estimation of soil solution electrical conductivity from bulk soil electrical conductivity in sandy soils. Soil Science Society of America Journal, 64(6), 1931-1939.‏ doi: 10.2136/sssaj2000.6461931x
Bouman, O.T., Curtin, D., Campbell, C.A., Biederbeck, V.O., & Ukrainetz, H. (1995). Soil acidification from long‐term use of anhydrous ammonia and urea. Soil Science Society of America Journal, 59(5), 1488-1494. doi: 10.2136/sssaj2000.6461931x
Butcher, K., Wick, A.F., DeSutter, T., Chatterjee, A., & Harmon, J. (2016). Soil salinity: A threat to global food security. Agronomy Journal, 108(6), 2189-2200. doi:10.2134/agronj2016.06.0368
Carter, M.R., & Gregorich, E.G. (2007). Soil sampling and methods of analysis. CRC press.‏ doi: 10.1201/9781420005271
Eltarabily, M.G., Bali, K.M., Negm, A.M., & Yoshimura, C. (2019). Evaluation of root water uptake and urea fertigation distribution under subsurface drip irrigation. Water11(7), 1487.‏ doi:10.3390/w11071487
Diez, J.A., Tarquis, A., Catagena, M.C., & Vallejo, A. (2006). Optimisation of N application for a maize crop grow in a shallow, irrigated soil. Spanish Journal of Agricultural Research, 4(4), 373-380. doi: 10.5424/sjar/2006044-214
Dervash, M.A., Bhat, R.A., Shafiq, S., Singh, D.V., & Mushtaq, N. (2020). Biotechnological intervention as an aquatic clean up tool. Fresh water pollution dynamics and remediation, 183-196.‏ doi:10.1007/978-981-13-8277-2_11.
Gu, Y. Y., Zhang, H. Y., Liang, X. Y., Fu, R., Li, M., & Chen, C.J. (2022). Effect of different biochar particle sizes together with bio-organic fertilizer on rhizosphere soil microecological environment on saline–alkali land. Frontiers in Environmental Science, 10, 949190.‏ doi: 10.3389/fenvs.2022.949190.
Gholami Sharafkhane, M., Ziaei, A.N., Naghedifar, S.M., & Akbari, A. (2024). Improving the scheduling of drip irrigation system using field measurements and crop modeling. Water and Soil Management and Modeling, 4(1), 299-313. doi: 10.22098/mmws.2023.12389.1236. [in Persian]
Guan, Z., Jia, Z., Zhao, Z., & You, Q. (2019). Dynamics and distribution of soil salinity under long-term mulched drip irrigation in an arid area of northwestern China. Water, 11(6), 1225.‏ doi: 10.3390/w11061225
Hanson, B.R., Šimůnek, J., & Hopmans, J.W. (2006). Evaluation of urea–ammonium–nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management, 86(1-2), 102-113. doi: 10.1016/j.agwat.2006.06.013
Han, J., Shi, J., Zeng, L., Xu, J., & Wu, L. (2015). Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils. Environmental Science and Pollution Research, 22, 2976-2986.‏ doi: 10.1007/s11356-014-3542-z.
Li, D., Yang, Y., Zhao, Y., Zhou, X., Han, Q., Liu, H., & Li, M. (2024). Optimizing cotton yield and soil salinity management: Integrating brackish water leaching and freshwater drip irrigation with subsurface drainage. Field Crops Research, 314, 109454. doi: 10.1016/j.fcr.2024.109454.
Jahantigh, M., Jahantigh, M., Dhemardhe, D., & Bayat, R. (2023). The effect of changes in salinity and irrigation method onthe growth of Rose and Hibiscus sabdariffa crops in the Sistan plain. Water and Soil Management and Modeling, 3(4), 181-191. doi:10.22098/mmws.2023.12061.1199. [in Persian]
Mahgoub, N.A., Mohamed, A.I., El Sayed, M., & Ali, O.M. (2017). Roots and nutrient distribution under drip irrigation and yield of faba bean and onion. Open Journal of Soil Science, 7(2), 52-67. ‏doi: 10.4236/ojss.2017.72004.
Merriam, J.L., & Keller, J. (1978). Farm Irrigation System Evaluation: A Guide to Management. Utah State University, Logan, Utah.
doi: 10.5555/19811964769
Moayedinezhad, A., Hosseini Salekdeh, G., Nejatian, M.A., & Mohsenifard, E. (2019). Effect of drought stress on some physiological and biochemical characteristics of two grapevine cultivars. Journal of Plant Process and Function, 8(32), 377-389.‏ doi: 20.1001.1.23222727.1398.8.32.20.8
Moradi Kashkooli, Sh., Hashemi, S.R., Khashei suiki, A., & Shahidi, A. (2016). Simulation of movement of water and solutes in soil by HYDRUS model to determine the suitable depth of dripper. Iranian Journal of Irrigation and Drainage, 1(10), 94-103. [in Persian]
Mushtaq, N., Singh, D.V., Bhat, R.A., Dervash, M. A., & Hameed, O.B. (2020). Freshwater contamination: sources and hazards to aquatic biota. Freshwater Pollution Dynamics and Remediation, 27-50. doi:27-50.‏ 10.1007/978-981-13-8277-2_3
Naderi, N,. & Tabatabaian, S.M. (2024). Investigating the Technical Performance and Soil Salinity Variations for Subsurface Drip Irrigation System of Pistachio Orchards in Semnan Province. Journal of Water Research in Agriculture, 38(2).139-148. doi: 10.22092/jwra.2024.364909.1031. [in Persian]
Namdarian, D., Boroomand-Nasab, S., Gorooei, A., Gaiser, T., Solymani, A., Naseri, A., & dos Santos Vianna, M. (2024). Determination of the optimum depth for subsurface dripping irrigation of sugarcane under crop residue management. Agricultural Water Management, 303, 109026.‏ doi: 10.1016/j.agwat.2024.109026.
Nayebloie, F., Kouchakzadeh, M., Ebrahimi, K., Homaee, M., & Abbasi, F. (2022). Improving fertigation efficiency by numerical modelling in a lettuce subsurface drip irrigation farm. Agricultural Water Management, 270, 107721.‏ doi: 10.1016/j.agwat.2022.107721
Nieder, R., Benbi, D.K., & Scherer, H.W. (2011). Fixation and defixation of ammonium in soils: a review. Biology and fertility of Soils, 47, 1-14.‏ doi: 10.1007/s00374-010-0506-4
Pahalvi, H.N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A.N. (2021). Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs, 1-20.‏ doi: 10.1007/978-3-030-61010-4_1.
Sheini-Dashtgol, A. (2019a). Principles of applied water management in sugarcane. 2th Edition: Sugarcane Research and Training In Institute, 168 pages. [in Persian]
Sheini-Dashtgol, A. (2019b). The effect of different distances and depths of pressure regulating drippers in subsurface drip irrigation on moisture distribution, water productivity, and quantitative and qualitative yield of sugarcane in the climatic conditions of southern Khuzestan. PhD thesis. Shahid Chamran University of Ahvaz. [in Persian]
Sheini-Dashtgol, A., Kermannezhad, J., Ghanbari-Adivi, E., & Hamoodi, M. (2022). Evaluating moisture distribution and salinity dynamics in sugarcane subsurface drip irrigation. Water Conservation Science and Engineering, 7(3), 227-245.‏ doi: 10.1007/s41101-022-00139-y.
Shukla, S., & Saxena, A. (2020). Sources and leaching of nitrate contamination in groundwater.Current Science, 118(6), 883-891.‏ doi: 10.18520/cs/v118/i6/883-891.
Singh, D.V., Bhat, R.A., Dervash, M.A., Qadri, H., Mehmood, M.A., Dar, G.H., Hameed, M., & Rashid, N. (2020). Wonders of nanotechnology for remediation of polluted aquatic environs. Fresh water pollution dynamics and remediation, 319-339.‏ doi: 10.1007/978-981-13-8277-2_17.
Smajstrla, A.G., Boman, B.J., Haman, D.Z., Pitts, D. J., & Zazueta, F.S. (1990). Field evaluation of micro irrigation water application uniformity. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.‏ doi: 10.32473/edis-ae094-1997
Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831.‏ doi: 10.3389/fenvs.2021.712831.
Taheri, M., Taheri, M., Abbasi, M., Mostafavi, K., & Vahedi, S. (2017). Patterns of soil salinity and sodium under surface and subsurface drip irrigation in olive trees. Irrigation and Water Engineering, 7(2), 127- 141. [in Persian]
Thidar, M., Gong, D., Mei, X., Gao, L., Li, H., Hao, W., & Gu, F. (2020). Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China. Agricultural Water Management, 241, 106340.‏ doi: 10.1016/j.agwat.2020.106340
Thomas, S.L., Bindhu, J.S., Pillai, S.P., Beena, R., Biju, J., & Sarada, S. (2024). Nutrient Dynamics and Moisture Distribution under Drip Irrigation System.‏ Journal of Experimental Agriculture International. 46(10), 485-493. doi: 10.9734/jeai/2024/v46i102972.
Yang, F., Wu, P., Zhang, L., Liu, Q., Zhou, W., & Liu, X. (2023). Subsurface irrigation with ceramic emitters improves the yield of wolfberry in saline soils by maintaining a stable low-salt environment in root zone. Scientia Horticulturae, 319, 112181.‏ doi: 10.1016/j.scienta.2023.112181.
Zaman, W.U., Arshad, M., & Saleem, A. (2001). Distribution of nitrate-nitrogen in the soil profile under different irrigation methods. International Journal of Agriculture and Biology, 2, 208-209.
Zanganeh Yusef Abadi, E., Hooshmand, A., Naseri, A., Boroomand-Nasab, S., & Parvizi, M. (2021). The effect of different management of sub-surface irrigation on water productivity, yield and yield component of sugarcane (var. CP69-1062). Irrigation Sciences and Engineering, 44(1), 1-15. doi: 10.22055/jise.2018.25258.1747 . [in Persian]
Zhou, J., Xia, F., Liu, X., He, Y., Xu, J., & Brookes, P.C. (2014). Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. Journal of soils and sediments, 14, 415-422.‏ doi: 10.1007/s11368-013-0695-1.