Assessment of the Impact of Watershed Management Practices on Hydrological Variables in the Mohammadabad Watershed using the SWAT Model

Document Type : Research/Original/Regular Article

Authors

1 Ph.D. Student, Department of Watershed Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 68984, Iran

2 Professor, Department of Watershed Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 68984, Iran.

3 Associated Professor, Department of Watershed Management, Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 68984, Iran

Abstract

Abstract

Introduction

Hydrological processes in watersheds are dependent on atmospheric processes and the physical characteristics of the watershed, playing a key role in the planning and management of water resources. In recent years, watershed management practices have gained attention as a managerial approach to improve ecosystem performance. These practices positively impact hydrological parameters of water bodies, including reducing flood risk, increasing soil permeability, and enhancing water quality. Additionally, by decreasing surface runoff, groundwater resources are also bolstered. Furthermore, reducing evaporation and improving water distribution throughout different seasons aids in optimizing water resource management, contributing to the sustainability of the environment and ecosystems. Therefore, assessing the impacts of these practices is essential for enhancing their efficiency. However, due to the complexity and high costs of these evaluations, the process can be challenging. Consequently, hydrological models are often utilized to simplify natural conditions and assist in water resource management, enabling the planning and prediction of changes in the hydrological cycle. In this study, the effectiveness of these practices was evaluated using the SWAT model in the Mohammadabad watershed of Golestan.

Materials and Methods

For this study, the required data, including climatic, physiographic, hydrological, land use, geological, and soil data, were obtained from relevant authorities and organizations. After gathering the necessary data, a database was created and data was analyzed using Excel 2019, SPSS 26, ArcGIS 10.8, and TerrSet 18.21 software. To simulate the climatic variables of the study area, daily data on rainfall, minimum and maximum temperatures, solar radiation, relative humidity, and wind speed from the Mohammadabad station for the years 1988 to 2017 were utilized. To examine the elevation of the study area, contour lines from 1:25,000 scale maps were imported into the GIS system, and a digital elevation model (DEM) with 10×10 m pixels was created, correcting any potential outlier cells using a LOW filter. The land use of the study area was initially prepared using 1:25,000 scale maps from the National Cartographic Organization, then refined and finalized using satellite images and field visits for high accuracy. For the SWAT model implementation, some necessary soil parameter data were obtained from the Golestan Natural Resources and Watershed Management Department, and due to the unavailability of some parameters, data for those parameters were sourced from FAO soil maps. Various algorithms and objective functions for calibration and validation were utilized using the SWAT-CUP software, and after evaluating the model performance in simulation and obtaining acceptable results, the model was prepared for the implementation of water and soil conservation measures.

Results and Discussion

The results indicate that the calibration and validation results demonstrate the acceptable performance of the SWAT model for simulating the hydrology of the Mohammadabad watershed. Specifically, the coefficient of determination during calibration and validation was found to be 0.93 and 0.98, respectively. Additionally, the Nash-Sutcliffe efficiency index was 0.90 for calibration and 0.96 for validation. Based on the findings, surface runoff would decrease significantly with the implementation of watershed management practices such as stone check dams, gabion walls, dry stone walls, afforestation, and seeding, by 36.36%, 22.73%, 18.18%, 18.18%, and 4.55%, respectively, compared to the scenario without these practices. Moreover, evaporation and transpiration were observed to increase by 85.69%, 53.87%, 29.87%, 10.11%, and 1.64% respectively when these interventions were applied. The implementation of watershed management practices in the Mohammadabad watershed has led to a reduction in peak flood discharge, decreasing from 181.5 m2 .s before these practices to 156 m2 .s per second afterward. The analysis of the 25-year flood discharge in the study watershed revealed a decrease of 13.13 m2 .s second, dropping from 93.47 m2 .s before the management practices to 80.34 m2 .s after. According to the study results, mechanical projects in the Mohammadabad watershed have successfully reduced surface runoff and flooding, subsequently decreasing soil material loss, erosion, and the transport of eroded particles from channels. This has also led to a reduction in sediment transfer from slopes to waterways, and from waterways to rivers and eventually to reservoirs and agricultural lands. In this context, the implementation of all watershed management practices in the Mohammadabad watershed has resulted in a 16.34% reduction in the 25-year flood discharge.

Conclusion

Overall, the findings suggest a significant positive impact of these practices within the examined watershed. The results showed the impact of watershed management measures on hydrological variables including surface runoff, peak discharge and flood volume of the Mohammadabad watershed, which will reduce the destruction and damage caused by floods in the study area. Based on the results of the watershed management operations in the study area, it was determined that biological operations are difficult to implement due to the high slope and shallow soil depth (mountainousness of the area). Therefore, since the Mohammadabad watershed is near the city of Fazelabad and has a mostly touristic aspect and the local economy is not dependent on livestock farming, therefore, management operations will be more effective. Also, mechanical operations will be prioritized over mechanical programs due to conditions such as high slope, shallow soil depth (mountainousness of the area), low concentration time, high peak discharge (basin shape coefficient) and consequently the presence of debris sediments and, most importantly, the presence of a flood history in the study watershed. Finally, it can be acknowledged that watershed management measures, in addition to helping reduce damage caused by floods and sediment, can also turn the threat of floods into an opportunity to nourish groundwater aquifers and provide water in springs, canals, and wells during droughts, at the lowest cost and in accordance with the ecological conditions of the region.

Keywords

Main Subjects


منابع
دارابی، فریبا، نجفی نژاد، علی، پورقاسمی، حمیدرضا، و سعدالدین، امیر (1403). پیش‌بینی اثر اقدامات بیولوژیک بر سیل‌خیزی حوزه آبخیز بهشت‌آباد با استفاده از روش‌های یادگیری ماشین. مدیریت جامع حوزه‌های آبخیز، 5(1)، 79-96. doi: 10.22034/iwm.2024.2032264.1159
زارعی قورخودی، علیرضا، شاهنظری، علی و محمدی، فاطمه (1401). ارزیابی تأثیر آببندان‌ها بر دو پارامتر رواناب و رسوب با استفاده از مدل SWAT (مطالعه موردی: حوضه آبخیز رودخانه تجن، مازندران). آبیاری و زهکشی ایران، 16(2)، 294-307. doi: 20.1001.1.20087942.1401.16.2.3.2
قویمی پناه، محمدحسین، غلامی، لیلا، کاویان، عطااله، و صادقی، سیدحمیدرضا (1403). تأثیر اقدام‌های آبخیزداری بر متغیرهای آب‌شناختی با استفاده از مدل SWAT در آبخیز کن. پژوهش‌های آبخیزداری، 37(2)، 93-109. doi: 10.22092/WMRJ.2023.362356.1542
قویمی پناه، محمدحسین، غلامی، لیلا، کاویان، عطااله، و صادقی، سیدحمیدرضا (1403). ارزیابی تاثیر اقدامات حفاظت خاک و آب بر تغییرات رسوب‌دهی حوزه آبخیز کن، استان تهران. مهندسی آبیاری و آب ایران، 14(3)، 42-56. doi: 10.22125/iwe.2023.403278.1726
گودرزی مسعود، معتمد وزیری، بهارک، و میرحسینی، محمدرضا (1396). ارزیابی کاربست مدل IHACRES به‌منظور شبیه‌سازی رواناب سطحی در شرایط تغییراقلیم: مطالعه موردی حوزه آبخیز کن. علوم ومهندسی آبخیزداری ایران،۱۱ (۳۸) :۸۳-۹۴. doi: 20.1001.1.20089554.1396.11.38.5.1
گلزاری، ساحره، زارع ابیانه، حمید، دلاور، مجید، و مبرقعی دینان، نغمه (1396). بررسی کارایی مدل در شبیه‌سازی کمی و کیفی رواناب و اقدامات آبخیزداری در حوزه زرینه‌رود. مدیریت حوزه آبخیز، 11(22)، 111-120. doi: ‎ 20.1001.1.22516174.1399.11.22.18.4
محمدی‌وند، محمدرضا، عراقی نژاد، شهاب، ابراهیمی، کیومرث، و مدرس، فرشته (1398). ارزیابی عملکرد مدل‌های AWBM، Sacramento و SimHyd در شبیه‌سازی رواناب حوضه امامه با استفاده از بهینه‌ساز واسنجی خودکار الگوریتم ژنتیک. تحقیقات آب و خاک ایران، 50(7)، 1759-1769. doi: 10.22059/ijswr.2019.258701.667923
مهری، سونیا، مرادی، حمیدرضا، و مصطفی‌زاده، رئوف (1402). شبیه‌سازی و تعیین مؤلفه‌های رواناب در بالادست سد قشلاق با استفاده از مدل SWAT، محیط‌زیست و مهندسی آب، 9(4)، 485-498. doi: 10.22034/ewe.2023.360340.1805
 
References
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of hydrology, 333(2-4), 413-430.‏ doi.org/10.1016/j.jhydrol.2006.09.014.
Abuhay, W., Gashaw, T., & Tsegaye, L. 2023. Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay watershed using the SWAT model. Journal of Agriculture and Food Research, 12, 100535.‏ doi.org/10.1016/j.jafr.2023.100535.
Ahmadabadi, E., Ghafarpour, P. (2017). Evaluation of the effects of watershed management on the hydrogeomorphological characteristics of the Anbar basin by using the semi-distributed SWAT. Space planning and design, 21(2), 35-55.
Anteneh, Y., Alamirew, T., Zeleke, G., Kassawmar, T. (2023). Modeling runoff-sediment influx responses to alternative BMP interventions in the Gojeb watershed, Ethiopia, using the SWAT hydrological model. Environmental Science and Pollution Research, 30(9), 22816-22834.‏ doi: 10.1007/s11356-022-23711-4
Basu, A.S., Gill, L.W., Pilla, F., Basu, B. (2022). Assessment of Variations in Runoff Due to Landcover Changes Using the SWAT Model in an Urban River in Dublin, Ireland. Sustainability, 14(1), 534.‏ doi: 10.3390/su14010534
Briak, H., Moussadek, R., Aboumaria, K., Mrabet R. (2016). Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. International Soil and Water Conservation Research, 4(3), 177-185. doi.org/10.1016/j.iswcr.2016.08.002.
Darabi, F., Najafinejad, A., Pourghasmi, H., & Sadoddin, A. (2024). Predicting the Effect of Biological Measures on Flood Generation in the Behesht Abad Watershed using Machine Learning Methods. Integrated Watershed Management, 5(1), 79-96. doi: 10.22034/iwm.2024.2032264.1159 [In Persian]
Ding, Y., W. Wang, X., Cheng, S., Zhao. (2008). Ecosystem Health Assessment in Inner Mongolia Region based on Remote Sensing and GIS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. Part B1: 1029-1034.
Dolatabadi, S., Mohamadian, M.E. (2013). Hydrological simulation of Firoozabad basin using SWAT model. Journal of Irrigation and Water Engineering, 14(29), 48-38.
Duan, Z., Song. X., Liu, J. (2009). Application of SWAT for sediment yield estimation in a mountainous agricultural basin. In Geoinformatics, 2009 17th International Conference on (pp. 1-5). IEEE.
Eiledmi, A., Norri, H., & Falahi, B. (2006). Evaluate the effect of Watershed Management projects to reduce erosion and sedimentation in Magnavy and Gholi Kandi of Hamadan. In The first regional conference exploitation of water resources in Karoun and Zayandehrood basin.‏
Ghavimipanah, M. H., Gholami, L., Kavian, A., & Sadeghi, S. H. R. (2024). Effect of Watershed Practices on Hydrological Variables using SWAT Model in Kan Watershed. Watershed Management Research, 37(2), 93-109. doi: 10.22092/WMRJ.2023.362356.1542 [In Persian]
Ghavimipanah, M. H., Gholami, L., Kavian, A., & Sadeghi, H. (2024). Impact Assessment of Soil and Water Conservation Practices on Sediment Yield Changes in Kan Watershed, Tehran Province. Irrigation and Water Engineering, 14(3), 42-56.  doi: 10.22125/iwe.2023.403278.1726 [In Persian].
Golzari, S., zareabyaneh, H., delavar, M., & Mobargaei Dinan, N. (2020). Performance of SWAT Model in Quantitative and Qualitative Simulation of Runoff and Watershed Protective Measures in Zarrinehrood Basin. Jwmr, 11(22), 111-120. doi: ‎ 20.1001.1.22516174.1399.11.22.18.4 [In Persian]
Goodarzi, M., Motamed Vaziri, B., & Mir hoseini, M. (2017). Assessment of IHACRES Model in Surface Run-off Simulation in Climate Change Status: A case study Kan Basin. Jwmseir, 11(38), 83-94. doi: 20.1001.1.20089554.1396.11.38.5.1 [In Persian]
Hazbavi, Z., Keesstra, S.D., Nunes, J.P., Baartman, J.E., Gholamalifard, M. & Sadeghi, S.H.R. (2018). Health comparative comprehensive assessment of watersheds with different climates. Ecological Indicators. 93, 781-790. doi: https://doi.org/10.1016/j.ecolind.2018.05.078
Jang, S.S., Ahn, S.R., & Kim, S.J. (2017). Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT. Agricultural Water Management, 180, 224-234. doi: 10.1016/j.agwat.2016.06.008
Kerr, J. M., George, P. S., Pangare, G., & Pangare, V. (2000). An evaluation of dryland watershed development projects in India.‏ (No. 581-2016-39504).‏
Mehri, S., Moradi, H.R., & Mostafazadeh, R. (2023). Simulation and determination of hydrological balance components in the upstream of Gheshlagh dam using SWAT model. Environment and Water Engineering, 9(4), 485-498. doi: 10.22034/ewe.2023.360340.1805 [In Persian]
Mohammadivand, M.R., Araghinejad, S., Ebrahimi, K., & Modaresi, F. (2019). Performance Evaluation of AWBM, Sacramento and SimHyd models in Runoff Simulation of the Amameh Watershed using Automatic Calibration Optimization Method of Genetic Algorithm. Iranian Journal of Soil and Water Research, 50(7), 1759-1769. doi: 10.22059/ijswr.2019.258701.667923 [In Persian]
Mtibaa, S., & Asano, S. )2022(. Hydrological evaluation of radar and satellite gauge-merged precipitation datasets using the SWAT model: Case of the Terauchi catchment in Japan. Journal of Hydrology: Regional Studies, 42, 101-134.‏ doi: 10.1016/j.ejrh.2022.101134
Nikolic, G., Spalevic, V., Curovic, M., Darvishan, A. K., Skataric, G., Pajic, M., & Tanaskovik, V. )2019(. Variability of soil erosion intensity due to vegetation cover changes: Case study of Orahovacka Rijeka, Montenegro. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 237-248. doi: 10.15835/nbha47111310 ‏
Pyo, J., Baek, S. S., Kim, M., Park, S., Lee, H., Ra, J. S., & Cho, K. H. )2017(. Optimizing agricultural best management practices in a Lake Erie watershed. JAWRA Journal of the American Water Resources Association, 53(6), 1281-1292.‏ doi: 10.1111/1752-1688.12571
Sadeghi, S.H.R., & Hazbavi, Z. )2017(. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran). Science of the Total Environment, 587, 168-176. doi: 10.1016/j.scitotenv.2017.02.098
Singh, V., Karan, S. K., Singh, C., & Samadder, S. R. )2023(. Assessment of the capability of SWAT model to predict surface runoff in open cast coal mining areas. Environmental Science and Pollution Research, 30(14), 40073-40083.‏doi: 10.1007/s11356-022-25032-y.
Sun, G., Wei, X., Hao, L., Sanchis, M. G., Hou, Y., Yousefpour, R., & Zhang, Z. )2023(. Forest hydrology modeling tools for watershed management: A review. Forest Ecology and Management, 530, 120755.‏ doi: 10.1016/j.foreco.2022.120755
Teshager, A. D., Gassman, P. W., Secchi, S., Schoof, J. T., & Misgna, G. )2016(. Modeling agricultural watersheds with the soil and water assessment tool (SWAT): Calibration and validation with a novel procedure for spatially explicit hrus. Environmental management, 57, 894-911.‏doi: 10.1007/s00267-015-0636-4
Upadhyay, P., Linhoss, A., Kelble, C., Ashby, S., Murphy, N., & Parajuli, P. B. )2022(. Applications of the SWAT model for coastal watersheds: review and recommendations. Journal of the ASABE, 65(2), 453-469.‏
Vilaysane, B., Takara, K., Luo, P., Akkharath, I., & Duan, W. )2015(. Hydrological stream flow modelling for calibration and uncertainty analysis using SWAT model in the Xedone river basin, Lao PDR. Procedia Environmental Sciences, 28, 380-390.‏ doi: 10.1016/j.proenv.2015.07.047
Xing, Z., Wang, Y., Ji, Y., Fu, Q., Li, H., & Qu, R. )2018(. Health assessment and spatial variability analysis of the Naolihe Basin using a water-based system. Ecological Indicators, 92, 181-188.‏ doi: 10.1016/j.ecolind.2017.08.045
Zarei ghorkhodi, A., Shahnazari, A., & Mohammadi, F. )2022(. Evaluation of the effect of dams on runoff and sediment parameters using SWAT model (Case study: Tajan River watershed, Mazandaran). Iranian Journal of Irrigation & Drainage, 16(2), 294-307. doi: 20.1001.1.20087942.1401.16.2.3.2 [In Persian]
Zhang, H., Wang, B., Li Liu, D., Zhang, M., Leslie, L. M., & Yu, Q. )2020(. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology, 585, 124822.‏ doi: 10.1016/j.jhydrol.2020.124822
Zhao, X., & Huang, G. )2022(. Urban watershed ecosystem health assessment and ecological management zoning based on landscape pattern and SWMM simulation: A case study of Yangmei River Basin. Environmental Impact Assessment Review, 95,106794. doi: https://doi.org/10.1016/j.eiar.2022.106794