The effect of using bi-levels geocomposite sheets on the chemical and biochemical characteristics of soil under wastewater reuse

Document Type : Research/Original/Regular Article

Authors

1 Professor, Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

2 Former M.Sc. Student, Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

3 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

4 Associate Professor, Department of Soil Science and Engineering, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

5 Ph.D., Co-researcher of Water Research Center, Shahrekord University, Shahrekord, Iran

Abstract

Abstract
Introduction
The reuse of wastewater in agriculture, especially for crop irrigation, can be one of the most important options to alleviate the water shortage problem and reduce environmental pollution through land based wastewater treatment. The presence of more organic matter and food and the presence of fecal matter in sewage effluent, increase the activity, survival, growth and development of bacteria. Those are as factors increasing soil cloiform in the condition of irrigation with sewage. Subsurface irrigation is one of the proved method that can minimize soil contamination in comparsion with other method of irrigation. It has been showen that, subsurface irrigation systems with geotextiles can reduce environmental pollution and the risk of soil and plant contamination when using wastewater. So far, many studies have investigated the effects of wastewater application on soil characteristics; but there is no information on the effect of wastewater application using SSTI (Subsurface Textile Irrigation) systems on soil properties. In this study, the effects of wastewater application in subsurface irrigation with geocomposite sheets on the chemical and biochemical characteristics of soil were investigated. In the present study, the changes in chemical and biochemical characteristics of soil due to the application of Shahrekord University wastewater using subsurface irrigation with geocomposite sheets were investigated.
Materials and Methods
This research was conducted as a factorial experiment based on a completely randomized design with three replications. The studied factors included the measurement location at two levels above (0-40 cm) and below the injection layer (40-80 cm) and the distance of the drain from the injection layer at two levels of 35 (D35) and 70 (D70) cm. To conduct the experiment, four meter long, 40 cm wide and 75 (D35) and 110 (D70) cm deep trenches were dug in the soil. The bed and walls of the trenches were covered with plastic and greased to prevent preferential flow from the plastic walls. Then the geocomposite layers were used as a drainage layer with a length of four meters and a width of 20 cm. After that, according to the desired treatment (35 and 70 cm thick), soil was poured on the drain to a depth of 40 cm from the ground surface. To conduct the research, geocomposite-sheets were used for the water influx layer and drainage layer. The treatments included two distances of 35 and 75 centimetres between the water influx and the drainage layer. In both treatments, the water influx layer was 40 centimetres below the ground surface. Wastewater was injected 12 times with a weekly frequency. At the beginning and end of the study period, soil samples were taken from two depths of 0-40 and 40-80 cm and pH, EC, total calcium and magnesium, carbonate and bicarbonate, nitrate and fecal and total coliform were measured.
Resullts and discussion
The results showed an increase in electrical conductivity, nitrate, carbonate and bicarbonate, total coliform and faecal coliform in the soil at the end of the study period compared to beginning of the study period. The pH of the soil has decreased in both the upper and lower areas of the water table. Probably, the decrease in soil pH under the conditions of using wastewater is due to the nitrification of ammonium and the leaching of cations from the soil. However, the results of the ANOVA of the effect of depth of measurement, depth of drain application, and their interaction on soil pH changes showed that the effect was not significant. The electrical conductivity of the soil has increased in both areas above and below the water table for both treatments. The results of ANOVA of the effect of measurement depth, depth of drain installation, and their interaction on percentage changes in soil electrical conductivity showed that the effect was not significant. The total soil calcium and magnesium in D70 and D35 treatments decreased on average by 6.66 and 8.48% compared to the beginning of the period, but this difference was not significant. According to the presented results, the amount of soil nitrate has increased as a result of irrigation with wastewater at both depths compared to the beginning of the research period. The amount of total coliform and faecal coliform in the soil at the end of the period has increased compared to its value at the beginning of the period.

Conclusion
As a conclusion, the use of geocomposite sheets for land treatment during the period of study did not have a negative effect on the chemical and biochemical properties of the soil, and this method can be used without worrying about soil contamination.

Keywords: Subsurface Irrigation, Geocomposite, Land Treatment, Soil contamination, Urban Wastewater
Article Type: Research Article

Acknowledgement
We would like to express our sincere gratitude to the University of Shahrekord for the financial and logistical supports who significantly contributed during the research project.

Conflicts of interest
The authors of this article declared no conflict of interest regarding the authorship or publication of this article.

Data Availability Statement:
The datasets are available upon a reasonable request to the corresponding author.

Authors’ contribution
Sayyed-Hassan Tabatabaei: Conceptualization, Analysis, Manuscript editing
Sajad Googoochani: Running test, Software, Analysis
Mahdi Ghobadinia: Formal analysis and investigation, Supervision
Hamidreza Motaghian: Manuscript editing
Azimeh Asgari: Writing - original draft preparation

Keywords

Main Subjects


تقی‌خو، محبوبه، و کریمی، احمد (1391). تأثیر آبیاری با پساب تصفیه شده شهری شهرکرد بر برخی خصوصیات شیمیایی خاک تحت کشت لوبیا قرمز. سومین همایش ملی جامع مدیریت منابع آب، ساری، مازندران. https://civilica.com/doc/335396
جهاندیده، یاشار، طباطبائی، سید حسن، و دهقانیان، مهرنوش (1403). تحلیل منحنی رخنة آلایندة باکتریایی در شرایط کشت چمن در ستون خاک با اندازة کود گاوی مختلف، مدل‌سازی و مدیریت آب و خاک، 4(2)، 75-88 doi:10.22098/mmws.2023.12529.1247
حاج‌هاشم‌خانی، مریم، قبادی‌نیا، مهدی، طباطبائی، سیدحسن، حسین‌پور، علیرضا، و هوشمندگوچی، سعدالله (1392). تاثیر روش کاربرد زئولیت اصلاح‌شده بر کیفیت پساب شهری خروجی و نفوذپذیری خاک. آب و خاک (علوم و صنایع کشاورزی)، 28(3)، 596-587. doi:10.22067/jsw.v0i0.26564
خمیس‌آبادی، افسانه، پروانک، کامران، و نصرآبادی، مهناز (1398). تأثیر استفاده از پساب فاضلاب بر آلودگی میکروبی خاک‌های فضای سبز شهری. مهندسی بهداشت محیط، 7(1)، 42-52. doi:10.29252/jehe.7.1.42
کریمی، بختیار، فتحی تیلکو، زینب، و عبدی، چنور (1394). بررسی توزیع نیترات در خاک آبیاری شده با فاضلاب تصفیه شده شهری تحت کشت گیاهان ذرت و گوجه‌فرنگی. مهندسی آبیاری و آب، 6(22)، 25-36. https://www.waterjournal.ir/article_73858.html
گوگوچانی، سجاد، قبادی‌نیا، مهدی، طباطبائی، سیدحسن، متقیان، حمیدرضا، و عسگری، عظیمه (1402). اثر کاربرد دو ترازی صفحات ژئوکمپوزیت بر کیفیت پساب دانشگاه شهرکرد. مدل‌سازی و مدیریت آب و خاک، 4(4)، 203-218. doi:10.22098/mmws.2023.13732.1362
یزدانی، وحید، قهرمان، بیژن، داوری کامران، و فاضلی ابراهیم (1393). تاثیر پساب بر خصوصیات فیزیکی و شیمیایی خاک. علوم و تکنولوژی محیط زیست، 16(93)، 543-558.
References
Abou Seeda, M.A., Hammad, S.A., Yassen, A.A., & Abou El-Nour E.A. (2020). Evaluation and optimization of Subsurface Irrigation (SDI) system: A review. Middle East Journal of Applied Sciences, 10(3), 503-534. doi:10.36632/mejas/2020.10.3.45
Andrews, D.M., Robb, T., Elliott, H., & Watson, J.E. (2016). Impact of long-term wastewater irrigation on the physicochemical properties of humid region soils: “The Living Filter” site case study. Agricultural Water Management, 178, 239-247. doi:10.1016/j.agwat.2016.10.001
APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed. Washington DC: American Public Health Association (APHA). https://ajph.aphapublications.org/doi/10.2105/AJPH.51.6.940-a
Ayers, R.S., & Westcot, D.W. (1985). Water quality for agriculture. In: FAO Irrigationand Drainage Paper 29 (Revision 1). Food and Agriculture Organization, Rome. https://www.fao.org/4/t0234e/t0234e00.htm
Barati, A.A., Pour, M.D., & Sardooei, M.A. (2023). Water crisis in Iran: a system dynamics approach on water, energy, food, land and climate (WEFLC) nexus. Science of The Total Environment, 882, 163549. doi:10.1016/j.scitotenv.2023.163549
Bedbabis, S., Ben Rouina, B., Boukhris, M., & Ferrara, G. (2014). Effect of irrigation withtreated wastewater on soil chemical properties and infiltration rate. Journal of Environmental Management, 133, 45–50. doi:10.1016/j.jenvman.2013.11.007
Bedbabis, S., Trigui, D., Ahmed, C.B., Clodoveo, M.L., Camposeo, S, Vivaldi, G.A., & Rouina, B.B. (2015). Long-terms effects of irrigation with treated municipal wastewater onsoil, yield and olive oil quality. Agricultural Water Management, 160, 14-21. doi:10.1016/j.agwat.2015.06.02
Bijani, M., Hayati, D., Azadi, H., Tanaskovik, V., & Witlox, F. (2020). Causes and consequences of the conflict among agricultural water beneficiaries in Iran. Sustainability, 12, 6630. doi:10.3390/su12166630
García-Orenes, F., Roldán, A., Guerrero, C., Mataix-Solera, J., Navarro-Pedreño, J., Gómez, I., & Mataix-Beneyto, J. (2007). Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge. Waste Management, 27(12), 1815–1819. doi:10.1016/j.wasman.2006.08.012
Gharbi Tarchouna, L., Merdy, P., Raynaud, M., Pfeifer, H.R., & Lucas, Y. (2010). Effects of longterm irrigation with treated wastewater. Part I: Evolution of soil physic-chemical properties. Applied Geochemistry, 25(2), 1703-1710. doi:10.1016/j.apgeochem.2010.08.018
Goldshmid, J., Zohar, D., Argamah, Y., & Koh, Y. (2013). Effect of downloaded from dissolved salts on the filtration of coliform bacteria in sand dunes. In: Jenkins, S.H., editor. Advances in water pollution research. Pergamon Press. New York; 2013. p. 147-153.
Gogochani, S., Ghobadinia, M., Tabatabaei, S.H., Motaghiyan, H.R., & Asgari, A. (2024). The effect of using bi-levels of geocomposite layers on the quality of Shahrekord University wastewater. Water and Soil Management and Modeling, 4(4), 203-218. doi:/10.22098/mmws.2023.13732.1362. [In Persian]
Habibi, S. (2019). A long-term study of the effects of wastewater on some chemical and physical properties of soil. Journal of Applied Research in Water and Wastewater, 12, 156–161. doi:10.22126/arww.2020.4593.1148
Hutchison, M.L., Walters, L.D., Moore, A., Crookes, K.M., & Avery, S.M. (2014) Length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied to agricultural soil. Applied and Environmental Microbiology, 70, 5111-5118. doi:10.1128/AEM.70.9.5111-5118.2004 
Jahandideh, Y., Tabatabaei, S., Dehghanian, M. (2024). Analysis of the bacterial pollution breakthrough curve in the soil column with different sizes of cow manure in the conditions of grass cultivation. Water and Soil Management and Modeling, 4(2), 75-88. doi:10.22098/mmws.2023.12529.1247. [In Persian]
Karimi, B., Fathi Tileko, Z., & Abdi, C. (2015). Evaluation of nitrate distribution in soil irrigated by treated urban wastewater under corn and tomatoes cultivation. Journal of Irrigation and Water Engineering, 6(22), 25-36. [In Persian]
Khamisabadi, A., Parvanak, K., & Nasrabadi, M. (2019). Effect of the use treated wastewater on microbial contamination of soils of urban landscapes. Journal of Environmental Health Engineering, 7(1), 42-52. [In Persian]
Kunhikrishnan, A., Bolan, N.S., Müller K., Laurenson, S., Naidu R., & Kim W.I. (2012). The influence of wastewater irrigation on the transformation and bioavailability of heavy metal (loid)s in soil. Advances in Agronomy, 115, 215-297. doi:10.1016/B978-0-12-394276-0.00005-6
Lado, Μ., Zapateira, A., Azenkot, A., Assouline, S., Ravina, I., Erner, Y., Fine, P., Dasberg, S., & Ben-Hur, M. (2012). Changes in chemical properties of semiarid soils under long-term secondary treated wastewater irrigation. Soil Science Society of America Journal, 76, 1358–1369. doi:10.2136/sssaj2011.0230
Mamilov, A., Dilly, O.M., Mamilov, S., & Inubushi, K. (2014). Microbial ecophysiology of degrading aral seawetlands: Consequences for C-cycling. Journal of Soil Science and Plant Nutriation, 50, 839-842. doi:10.1080/00380768.2004.10408544
Mirzaei, A., & Zibaei, M. (2020). Water conflict management between agriculture and wetland under climate change: application of economic-hydrological-behavioral modelling. Water Resourse Managment, 35, 1-21. doi:10.1007/s11269-020-02703-4
Nouri, M., & Homaee, M. (2020). Drought trend, frequency and extremity across a wide range of climates over Iran. Meteorological Applications, 27, e1899. doi:10.1002/met.1899
Nouri, M., Homaee, M., Pereira, L.S., & Bybordi, M. (2023). Water management dilemma in the agricultural sector of Iran: A review focusing on water governance. Agricultural Water Management, 288, 108480. doi:10.1016/j.agwat.2023.108480
Rowell, D.L. (1994). Soil Science: Methods and Applications. Longman Group, Harlow, 350p.
Sdiri, W., AlSalem, H.S., Al-Goul, S.T., Binkadem, S.M., & Mansour, H.B. (2023). Assessing the effects of treated wastewater irrigation on soil physico-chemical properties. Sustainability, 15, 5793. doi:10.3390/su15075793
Singh, P.K., Deshbhratar, P.B., & Ramteke, D.S. (2012). Effects of sewage wastewaterirrigation on soil properties, crop yield and environment. Agricultural Water Management, 103, 100-104. doi:10.1016/j.agwat.2011.10.022
Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Vadez, V., van Loon, M.P., & Van Ittersum, M.K. (2020). Future food self-sufficiency in Iran: A model-based analysis. Global Food Security, 24, 100351. doi:10.1016/j.gfs.2020.100351
Tabatabaei, S.H., Nourmahnad, N., Golestani Kermani, S., Tabatabaei, S.A., Najafi, P., & Heidarpour, M. (2020). Urban wastewater reuse in agriculture for irrigation in arid and semi-arid regions- A review. International Journal of Recycling Organic Waste in Agriculture, 9(2), 193-220. doi:10.30486/ijrowa.2020.671672
Taghikhoo, M., & Karimi, A. (2012). The effect of irrigation with Shahrekord city treated wastewater on some chemical properties of soil under red bean cultivation. 3rd National Conference on Comprehensive Water Resources Management. https://civilica.com/doc/335396 [In Persian]
Taheri-Sodejani, H., Ghobadinia, M., Tabatabaei, S.H., & Kazemian, H. (2015). Using natural zeolite for contamination reduction of agricultural soil irrigated with treated urban wastewater. Desalination and Water Treatment, 54(10), 2723-2730. doi:10.1080/19443994.2014.904818
Tarchouna, L.G., Merdy, P., Raynaud, M., Pfeifer, H.R., & Lucas, Y. (2010). Effects of longterm irrigation with treated wastewater. Part I: evolution of soil-chemical properties. Applied Geochemistry, 25, 1703e1710. doi:j.apgeochem.2010.08.018
Tsigoida, A., & Argyrokastritis, I. (2019). The effect of sub-irrigation with untreated and treated municipal wastewater on organic matter and nitrogen content in two different soils. Global NEST Journal, 21(3), 389-398. doi:10.30955/gnj.002810
Urbano, V.R., Mendonca, T.G., Bastos, R.G., & Souza, C.F. (2017). Effects of treated wastewater irrigation on soil properties and lettuce yield. Agricultural Water Management, 181, 108-115. doi:10.1016/j.agwat.2016.12.001
Yazdani, Y., Ghahreman, B., Davudee, K., & Fazeli, E. (2014). The effect of wastewater on physical and chemical features of soil. Journal of Environmental Science and Technology, 16, 543-555. [In Persian]
Zakeri, M.A., Mirnia, S.K., & Moradi, H. (2022). Assessment of water security in the large watersheds of Iran. Environmental Science & Policy, 127, 31-37. doi:10.1016/j.envsci.2021.10.00