Effect of Magnetized Water and Sugarcane Bagasse-derived Biochar on the Growth and Chemical Composition of Spinach Grown under Drought Stress (Limited Irrigation) in Greenhouse Conditions

Document Type : Research/Original/Regular Article

Authors

1 Department of Soil Science and Engineering, College of Agriculture, Shiraz University, Shiraz, Iran.

2 Department of Soil Science and Engineering, College of Agriculture, Shiraz University,, Iran.

3 Department of Soil Science and Engineering, College of Agriculture, Shiraz University, Shiraz, Iran

4 Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran

Abstract

Extended Abstract

Introduction

Water scarcity and drought are becoming global problems, particularly in arid and semiarid regions. Drought stress is one of the factors that negatively affect the quantitative or qualitative growth of plants. changes outside the desired range of environmental factors. Due to the severe limitations of water resources in most regions of the country, moisture stress has been defined as one of the most important stresses adversely affecting plant growth and yield. Drought stress generally occurs when water levels of soil and atmosphere decrease through evaporation and transpiration. Almost all plants are somewhat drought tolerant, but the degree of tolerance varies from species to species. Magnetic water can be one of the promising methods to overcome the problem of lack of water resources, improve the production of agricultural products, and deal with drought stress on the plant in different stages of growth, at the same time, it is environmentally friendly. Adding biochar to the soil is another method of dealing with drought stress, increasing organic matter and, as a result, increasing water retention in the soil. Therefore, this study was conducted to investigate the combined effect of moisture stress, biochar, and magnetic water on spinach growth and chemical composition under greenhouse conditions.

Materials and Methods

A factorial greenhouse experiment in the form of a completely randomized design with three replications was conducted with drought stress at three levels of field capacity (FC), 75% of field capacity moisture (0.75FC), and 50% of field capacity (0.5FC); and four levels (0, 1, 2, and 3% by weight) of sugarcane bagasse-derived biochar prepared at 400 ºC and two types of water including magnetized water and non-magnetized water. The required soil was taken from a depth of 0 to 30 cm of a calcareous soil, air-dried, passed through a 2-mm sieve, and analyzed for physical and chemical properties. Sugarcane bagasse was collected from Imam Khomeini Sugar Factory located in Khuzestan Province and converted to biochar at 400 °C under limited oxygen conditions for 4 h. Magnetic water of 0.21 Tesla was prepared by repeatedly passing drinking water through a water magnetizing device. According to the results of the soil test, nutrient elements were added to the soil. 15 spinach seeds (Spinacia oleracea L., var. Virofly) were planted in each pot and they were maintained in greenhouse conditions. After one month, the number of plants was reduced to 9 in each pot. All pots were treated by the mentioned moisture levels through daily weighing. Drought treatments were started two weeks after planting and continued throughout the growing season for two months. After harvesting, plant samples were prepared and chemically analyzed. Statistical analysis was performed using Excel and SAS statistical software and means were compared using Duncan's test at a probability level of 5%.

Results and Discussion

The results showed that in plants irrigated with magnetized water, the application of 1, 2, and 3% of biochar caused an increase of 3.9%, 7.8%, and 8.3%, respectively in the shoot dry weight of spinach, although the changes were not statistically significant, Furthermore, moisture levels of 0.75FC and 0.5FC in the magnetized water caused a decrease of 3.7% and 15.7%, respectively, and in normal water, it caused 8.3% and 24% decrease in shoot dry weight, respectively. In plants irrigated with magnetized water, application of 1, 2, and 3% biochar compared to the control caused a decrease of 19.2%, 32.5%, and 30.6% respectively in the shoot Cu concentration. Whereas, the use of 2% and 3% biochar caused an increase of 6.2% and 11.9% in the shoot Mn concentration. Applying 0.75FC and 0.5FC moisture stress levels compared to the normal conditions caused a significant decrease of 19.5% and 29.7% in shoot Cu concentration, 21.2% and 21.1% decrease in shoot Fe concentration, and 18% and 20% decrease in shoot K concentration, respectively. Whereas, the mentioned moisture levels caused an increase of 24.7% and 47% in the shoot Mn concentration.

Conclusion

In general, the application of magnetized water compared to normal water significantly increased the shoot Mn and Zn concentration by 3 times and 40.4%, respectively, compared to that of the control. Using magnetized water increased shoot dry weight by 10.8% compared to normal water. The results showed that the application of magnetized water can be used as a suitable solution to increase the concentration of some nutrients and some growth characteristics of spinach. In general, the results showed that the application of magnetized water and biochar, which have been introduced as two strategies to reduce the adverse effects of drought on plants, can be effective on the chemical composition of plants and nutrient concentration of the plant. Further studies are recommended to evaluate the impacts of other biochar derived from livestock manure and plant residues, as well as different levels of biochar, on spinach and other crops, under drought or other stress conditions.

Keywords

Main Subjects


منابع
باقری، علیرضا، و حیدری شریف‌آباد، حسین (1386). بررسی اثر تنش خشکی بر عملکرد و اجزای عملکرد و محتوی یون‌ها در گیاه جو بدون پوشینه .(Hordeum sativum L.) دانش نوین کشاورزی، 3(7)، 1- 15.
حبیبی، هادی، موحدی نایینی، سید علیرضا، خوش­رو، مجتبی، و صابری، علیرضا (1398). تأثیر آب مغناطیسی بر عملکرد و جذب برخی از عناصر در ذرت در شرایط مزرعه. مهندسی زراعی (کشاورزی)، 42(2)، 131-142.doi:10.22055/agen.2019.27239.1454
ساجدی، نورعلی، و رجالی، فرهاد (1390). تأثیر تنش خشکی، کاربرد روی و تلقیح میکوریز بر جذب عناصرکم مصرف در ذرت. پژوهش‌های خاک (علوم خاک و آب)، 25(2)، 9- 83. doi:10.22092/ijsr.2011.126473
صمدیار، حسن، رهی، علیرضا، شیرمحمدی، کیانوش، تقی­زاده، فرید، و کدخدا، زهره (1394). تأثیر پالایش الکترونیکی آب (آب مغناطیسی) بر آلکالوئید هیوسین دانه و برخی صفات مورفولوژیکی دو گونه تاتوره. گیاه و زیست بوم،10(40)، 59- 72.
عالی‌نژادیان بیدآبادی، افسانه، حسنی، مریم، و ملکی، عباس (1397). تأثیر مقدار و شوری آب بر شوری خاک و رشد و غلظت عناصر غذایی اسفناج در گلدان. پژوهش‌های آب و خاک ایران، 49(3)، 641-651.doi:10.22059/ijswr.2017.236843.667714
عظیم‌زاده، یاسر، و نجفی، نصرت‌اله (1395). اثر بیوچار بر ویژگی‌های فیزیکی، شیمیایی و بیولوژیکی خاک. مدیریت اراضی، 4(2)، 173-161. doi:10.22092/lmj.2017.109488
کافی، محمد، برزویی، اعظم، صالحی، معصومه، کمندی، علی، معصومی، علی، و نباتی، جعفر (1388). فیزیولوژی تنش‌های محیطی در گیاهان. جهاد دانشگاهی، مشهد، 502.
کرمی، شهرزاد، زارعی، مهدی، یثربی، جعفری، و موسوی، سید علی اکبر (1395). اثر باکتری محرک رشد گیاه بر جذب برخی عناصر کم‌مصرف به‌وسیلة ذرت در یک خاک آلوده به کادمیم تحت تنش کم‌آبی. دانش آب و خاک، 25(2/3)، 105 -117.doi:10.22067/jsw.v30i4.44237
گویلی، ادریس، موسوی، سید علی‌اکبر، و کامگارحقیقی، علی‌اکبر (1396). اثر بیوچار کود گاوی بر ترکیب شیمیایی اسفناج رشد یافته در وضعیت‌های رطوبتی مختلف در یک خاک آهکی. پژوهش‌های خاک (علوم خاک و آب)، 31(4)، 525-544.doi:10.22092/ijsr.2018.115854
 
References
Alattar, E., Radwan, E., & Elwasife, K. (2022). Improvement in growth of plants under the effect of magnetized water. Aims Biophysics, 9(4), 346-387. doi:10.3934/biophy.2022029
Alinejadian Bidabadi, A., Hasani, M., & Maleki, A. (2018). The effect of amount and salinity of water on soil salinity and growth and nutrients concentration of spinach in a pot experiment. Iranian Journal of Soil and Water Research, 49(3), 641-651.
Alpsoy, H.C., & Unal, H. (2019). Effect of stationary magnetic field on seed germination and crop yield in spinach (Spinacia oleracea L.). Comptes Rendus del’Académie Bulgare des Sciences, 72(5), 678- 698.
      doi:10.7546/CRABS.2019.05.18
 
Azimzadeh, Y., & Najafi, N. (2017). Effects of biochar on soil physical, chemical, and biological properties. Land Management Journal, 4(2), 161-173.
       doi:10.22092/lmj.2017.109488 [In Persian]
Bagheri, A.R., & Heydari Sharifabad, H. (2007). effect of drought and salt stresses on yield, yield components, and ion content, of hull-less barley (Hordeum sativum L.). Agroecology Journal (Journal of New Agricultural Science), 3(7), 1-15.
        https://sid.ir/paper/166845/en [In Persian]
Berek, A.K., Hue, N., & Ahmad, A. (2011). Beneficial use of biochar to correct soil acidity.
The Food Provider is available at www.ctahr.hawaii.edu/huen/nvh/biochar.
Biketi, S. (2018). Investigation of the effect of long-term exposure of magnetic field on the elemental composition and chlorophyll concentration in spinach beet (Beta vulgaris subsp. vulgaris) (Doctoral Dissertation, Egerton University).
Cong, M., Hu, Y., Sun, X., Yan, H., Yu, G., Tang, G., Chen, Sh., Xu, W., & Jia, H. (2023). Long-term effects of biochar application on the growth and physiological characteristics of maize. Frontiers in Plant Science14, 1172425. doi:10.3389/fpls.2023.1172425
Teixeira da Silva, J. A., & Dobránszki, J. (2016). Magnetic fields: how is plant growth and development impacted? Protoplasma, 253(2), 231-248.‏ doi:10.1007/s00709-015-0820-7
El Sayed, H.E.S.A., & El Sayed, A. (2014). Impact of magnetic water irrigation for improving the growth, chemical composition and yield production of Broad Bean (Vicia faba L.) plant. American Journal of Experimental Agriculture, 4(4), 476-496.
Esitken, A., & Turan, M. (2007). Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria X ananassa cv. Camarosa). Acta Agriculturae Scandinavica, Section B- Soil and Plant Science, 54, 135–139.
Gartler, J., Robinson, B., Burton, K., & L. Clucas. (2013). Carbonaceous soil amendments to biofortify crop plants with zinc. Science of the Total Environment, 465, 308–313.
Gavili, E., Moosavi, A.A., & Moradi-Choghamarani, F. (2018a). Cattle manure biochar potential for ameliorating soil physical characteristics and spinach response under drought. Archives of Agronomy and Soil Science, 64, 1714-1727.
       doi:10.1080/03650340.2018.1453925
Gavili, E., Moosavi, A.A., & Zahedifar, M. (2019). Integrated effects of cattle manure-derived biochar and soil moisture conditions on soil chemical characteristics and soybean yield. Archives of Agronomy and Soil Science, 65, 1758-1774. doi:10.1080/03650340.2019.1576864
Gavili, E., Moosavi, A.A., & Kamgar Haghighi, A.A. (2018b). Effect of cattle manure biochar on the chemical composition of spinach grown at different water conditions in a calcareous soil. Iranian Journal of Soil Research, 31(4), 525-544.
         doi:10.22092/ijsr.2018.115854 [In Persian]
Grewal, S.H., & Maheshwari, B.L. (2011). Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics, 32, 58–65.
        doi:10.1002/bem.20615.
Habiby, H., Movahedi, A.R., Khoshravesh, M., & Saberi, A.R. (2019). The effect of magnetic water on the yield of corn and the adsorption of potassium, zinc and iron. Agricultural Engineering (Scientific Journal of Agriculture), 42(2), 131-142.
Hardy, B., Sleutel, S., Dufey, J. E., & Cornelis, J. T. (2019). The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management. Frontiers in Environmental Science, 7, 110.‏ doi:10.3389/fenvs.2019.00110
Hasan, M.M., Alharby, H.F., Hajar, A.S., Hakeem, K.R., & Alzahrani, Y. (2019). The effect of magnetized water on the growth and physiological conditions of Moringa species under drought stress. Polish Journal of Environmental Studies, 28(3), 1145-1155. doi: 10.15244/pjoes/85879
Hozayn, M., & Abdul Qados, A.M.S. (2010). Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agriculture and Biology Journal of North America, 1, 671–676. http://scihub.org/ABJNA/PDF/2010/4/1-4-671-676.pdf
Jin, F., Piao, J., Miao, S., Che, W., Li, X., Li, X., Shiraiwa, T., Tanaka, T., Taniyoshi, K., Hua, S., & Lan, Y. (2024). Long-term effects of biochar one-off application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield of highly saline-alkali paddy soils: based on a 6-year field experiment. Biochar, 6(1), 1-22.‏ doi:10.1007/s42773-024-00332-3
Jones, J.B. (2001). Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, USA. 382 P.
Kafi, M., Borzouei, A., Salehi, M., Kamandi, A., Maasoomi, A., & Nabati, J. (2010). Physiology of Environmental Stresses in Plants. Jihad University Press, Mashhad, Branch, 502 P. [In Persian]
Karami, S., Zarei, M., Yasrebi, J., & Moosavi, A. A. (2016). Effect of plant growth promoting rhizobacterium on uptake of some micronutrients by corn in a cd-contaminated soil under water deficit stress conditions. Water and Soil Science, 26(3-2), 105-117. doi:10.22067/jsw. v30i4.44237 [In Persian]
Lee, Y.N., Kim, S.S., Lee, D.W., Shim, J.H., Jeon, S.H., Roh, A.S., Kwon, S.A., Seo, D.C.H, & Kim, S.H. (2024). Characterization and application of biochar derived from greenhouse crop by-products for soil improvement and crop productivity in South Korea. Applied Biological Chemistry, 67(1), 112.
        doi:10.1186/s13765-024-00968-6
Lin, Y., Cai, Q., Chen, B., & Garg, A. (2024). A review of the negative effects of biochar on soil in green infrastructure with consideration of soil properties. Indian Geotechnical Journal, 1-15.
      ‏ doi:10.1007/s40098-024-00875-z
Maheshwari, B.L., & Grewal, H.S. (2009). Magnetic treatment of irrigation water: its effects on vegetable crop yield and water productivity. Agricultural Water Management, 96, 1229–1236.
Moon, J.D., & Chung, H.S. (2000). Acceleration of germination of tomato seed by applying AC electric and magnetic fields. Journal of Electrostatics, 48, 103–114.
Moradi-Choghamarani, F., Moosavi, A.A., & Baghernejad, M. (2019a). Determining organo-chemical composition of sugarcane bagasse-derived biochar as a function of pyrolysis temperature using proximate and Fourier transform infrared analyses. Journal of Thermal Analysis and Calorimetry, 138, 331-342. doi:10.1007/s10973-019-08186-9
Moradi-Choghamarani, F., Moosavi, A.A., Sepaskhah, A.R., & Baghernejad, M. (2019b). Physico-hydraulic properties of sugarcane bagasse-derived biochar: the role of pyrolysis temperature. Cellulose, 26, 7125-7143. doi:10.1007/s10570-019-02607-6
Nahar, K., & Gretzmacher, R. (2002). Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Die Bodenkultur, 53(1), 45-51.
Pang, X.F., & Deng, B. (2008). Investigation of changes in properties of water under the action of a magnetic field. Science China Physics, Mechanics and Astronomy, 51, 1621–1632.
Ponce, R.G., & Salas, M.L. (2008). Improvement of the growth, grain yield, and nitrogen, phosphorus, and potassium nutrition of grain corn through weed control. Journal of Plant Nutrition, 18(11), 2313–2324.
       doi: 10.1080/01904169509365067
Putti, F.F., Vicente, E.F., Chaves, P.P.N., Mantoan, L.P.B., Cremasco, C.P., Arruda, B., Forti, G.C., Junior, G.F.S., Reis, A.R., & Filho, L.R.A.G. (2023). Effect of magnetic water treatment on the growth, nutritional status, and yield of lettuce plants with irrigation rate. Horticulturae, 9(4), 504.
      ‏ doi:10.3390/horticulturae9040504
Rawabdeh, H., Safwan, S., & Rida, S. (2014). The effect of irrigation bymagnetically water on chlorophyll and macroelements uptake of pepper (Capsicum annuum L.). Jordan Journal of Agricultural Sciences, 10(2), 503-526
Richard, A.J., & Wichern, D.W. (2007). Applied Multivariate Statistical Analysis. 6th Ed. Prentice Hall, USA. 395 P.
Sajedi, N.A., & Rejali, F. (2011). Effects of drought stress, zinc application, and mycorrhiza inoculation on uptake of micronutrients in maize. Journal of Soil Research, 25(2), 83-92. doi:10.22092/ijsr.2011.126473 [In Persian]
Saliha, B.B. (2005). Bio efficacy testing of GMX online magnetic water conditioner in grapes var. ‘Muscat’. Tamil Nadu Agricultural University. Project Completion Project.
Samadyar, H., Rahi, A., Shermohammadi, K.Taghizadfarid, R., & Kadkhoda, Z. (2014). The impact of electronic purification of water (magnetic irrigation) on seed hyoscine and some morphological traits of two datura species. Journal of Ecology and Plant, 10(40), 59-72.
Selim, D.A.F.H., Nassar, R.M.A., Boghdady, M.S., & Bonfill, M. (2019). Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiology and Biochemistry, 135, 480-488.
       doi: 10.1016/j.plaphy.2018.11.012
Sposito, N.C. (2013). Soil nutrient availability properties of biochar. A Thesis presented to the Faculty of Cal Poly State University, San Luis Obispo. doi:10.15368/theses.2013.175
Tahir, N.A.R., & Karim, H.F.H. (2010). Impact of magnetic application on the parameters related to growth of chickpea (Cicer arietinum L.). Jordan Journal of Biological Sciences, 3(4), 175-184.
 Wolfgang, K.H., & Simar, L. (2007). Applied Multivariate Statistical Analysis. 2nd Ed. Springer- Verlag Berlin Heidelberg, Germany. 455 P.
Yokatani, K.T., Hashimoto, H., Yanagisawa, M., Nakamura, T., Hasegawa, K., & Yamashita, M. (2001). Growth of Avena seedlings under a low magnetic field. Biological Sciences in Space, 15, 258-259.
Zahedifar, M. (2017). Sequential extraction of zinc in the soils of different land use types as influenced by wheat straw-derived biochar. Journal of Geochemical Exploration, 182, 22-31. doi: 10.1016/j.gexplo.2017.08.007
Zahedifar, M. (2020). Iron fractionation in the calcareous soils of different land uses as influenced by biochar. Waste and Biomass Valorization, 11, 2321-2330.
Zahedifar, M., & Moosavi, A.A. (2017). Modeling desorption kinetics of the native and applied zinc in biochar-amended calcareous soils of different land uses. Environmental Earth Science, 76, 567.
       doi: 10.1007/s12665-017-6895-z
Zhang, J., Sha, Z., Zhang, Y., Bei, Z., & Cao, L. (2015). The effects of different water and nitrogen levels on yield, water, and nitrogen utilization efficiencies of spinach (Spinacia oleracea L.). Canadian Journal of Plant Science, 95(4), 671-679.
Zhang, J., Ge, L. A., Yang, Y., Zhang, X., Wang, C., Sun, H., Chen, H., Huang, J., & Zhou, S. (2024). Production and subsequent application of different biochar-based organic fertilizers to enhance vegetable quality and soil carbon stability. Journal of Soil Science and Plant Nutrition, 1-13.‏ doi:10.1007/s42729-024-02123-y
Zlotopolski, V. (2017). Magnetic treatment reduces water usage irrigation without negatively impacting yield, photosynthesis and nutrient uptake in lettuce. International Journal of Applied Agricultural Sciences, 3(5), 117-122. doi: 10.11648/j.ijaas.20170305.13