Evaluation of AquaCrop model in predicting rice grain yield and biomass under water stress in different years

Document Type : Research/Original/Regular Article

Authors

1 Department of irrigation and drainage, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Department of Water Engineering, Lahijan Branch, Islamic Azad Univ., Lahijan, Iran

3 Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran

4 Assistant Professor, Department of Agriculture, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Abstract

Introduction

Rice is one of the most important cereals in providing food security and the main food of billions of people in the Asian continent and many other parts of the world. Drought is the most important factor limiting rice production in paddy fields, which affects all stages of rice growth and development. Researches has shown that avoiding the conventional flood irrigation methods in rice cultivation and using alternative methods such as intermittent irrigation have a great effect on increasing water productivity and reducing its consumption. But in determining the most suitable alternative method of irrigation in each region, it should be noted that the effects of water shortage change with changes in the intensity, duration and time of its application. Today many Crop Growth Models (CGM's) have been designed to avoid the huge costs of conducting field research, speed up finding suitable solutions, and help to better understand and solve problems related to water movement in the soil and plant growth. Studies show that CGM's are able to consider the effect of different stresses such as water stress on dry matter production and grain yield during the growth period. One of the CGM’s is the AquaCrop model developed by FAO. The presence of factors such as moderate to severe water stress causes a significant decrease in the simulation accuracy by model, which is mentioned as one of the defects of the model. Most of studies with AquaCrop model have been limited to data collected in short periods. Therefore, the aim of this research is to evaluate the efficiency and accuracy of the AquaCrop model in simulating rice grain yield and biomass under multiple water stresses and during different years.



Materials and Methods

In order to evaluate the accuracy of the model in predicting the grain yield and biomass of rice, data collected from several research projects carried out in different years, the model was first calibrated and validated. The Hashemi variety used in all these projects, which is the most common variety cultivated in Guilan province. All agricultural operations of planting, growing and harvesting were carried out according to regional customs and the amounts of chemical fertilizers, herbicides and pesticides based on the recommendations of experts in agriculture and herbal medicine of the rice research institute. For the present study, a total of 45 irrigation treatments were selected from the previous projects carried out in the lands of the Country Rice Research Institute, Lahijan and Soumesara, of which 31 treatments were used for the calibration section and 14 treatments were used for model validation. The model was implemented for each irrigation treatment separately and the grain yield and biomass values obtained from the simulation were analyzed with the measured values based on the statistical indicators used in this research.



Results and Discussion

Based on the results of calibration of the model, the range of observed grain yield was 2100 to 4870 with an average of 3765 kg.ha-1. This is while the corresponding values simulated in the calibration conditions by the model were equal to 1749 to 4704 with an average of 3748 kg.ha-1. The accuracy of the model is low at the low limit of performance, but very accurate at the high and average performance limits. This phenomenon can be attributed to the estimation error of the model in the presence of environmental stresses such as water and fertilizer stress, which has also been mentioned in the studies of other researchers. Also, the values of RMSE and NRMSE for yield simulation were equal to 309.65 kg.ha-1 and 8.22%, respectively, which indicates very good accuracy in model calibration. Also, RMSE and NRMSE values for biomass simulation in calibration conditions were equal to 596.31 kg.ha-1 and 6.41%, respectively. The values of RMSE and NRMSE for the simulation of performance in the validation conditions were equal to 168.42 kg.ha-1 and 10.30%, which indicates good accuracy in model validation. Also, the values of RMSE and NRMSE for the simulation of biomass were equal to 554.71 kg.ha-1 and 12.90%, which shows the good accuracy of the model in validation. Examining the results of the model in different water stresses showed that with the increase of water stress from permanent waterlogging to high stress with the addition of irrigation cycles, the amount of model error in yield simulation increases.



Conclusion

In general, the AquaCrop model has good accuracy in simulating the grain yield and biomass of Hashemi variety rice, but the more severe the amount of water stress, the accuracy of the model decreases and its error increases. This problem is attributed to the structure of the model and the mathematical equations used in it, as well as the measured data. However, the AquaCrop model has many advantages such as the need for less data, the ability to be used for a wide range of crops and the user-friendliness of the model and it is recommended to use the AquaCrop model in different irrigation managements, especially in conditions without severe water stress, where the model has very good accuracy. But it is recommended due to the advantages of the AquaCrop model, such as the need for less data, the ability to be used for a wide range of crops and the user-friendliness of the model, its use in different irrigation managements, especially in conditions without extreme water stress, where the model has very good accuracy.

Keywords

Main Subjects


منابع
ابراهیمی پاک، نیاز علی، اگدرنژاد، اصلان، تافته، آرش، و خدادادی دهکردی، داوود (1397). بررسی کارایی مدل AquaCrop در شبیه‌سازی عملکرد گیاه کلزا تحت سناریوهای کم‌آبیاری در دشت قزوین. تحقیقات آب و خاک ایران، 49(5)، 1015-1003. doi: 10.22059/ijswr.2018.236158.667708
امیری، ابراهیم، رضایی، مجتبی، و بنایان اول، محمد (1390). ارزیابی مدل رشد گیاهی برنج  ORYZA2000در شرایط محدودیت آبیاری و کود نیتروژن (واسنجی و اعتباریابی). آب و خاک، 25(4)، 757-769. doi: 10.22067/jsw.v0i0.10206
برزیکار، محمدعلی، اگدرنژاد، اصلان، تافته، آرش، و ابراهیمی پاک، نیازعلی (1399). شبیه‌سازی عملکرد و بهره‌وری آب گندم در دشت هندیجان با استفاده از مدل AquaCrop. مدیریت آب در کشاورزی، 7(1)، 64-53. doi: 20.1001.1.24764531.1399.7.1.6.3
ترحمی، گلناز، لاهوتی، مهرداد، و عباسی، فروغ (1389). بررسی اثرات ناشی از تنش خشکی بر روی تغییرات قندهای محلول، میزان کلروفیل و پتاسیم در گیاه نوروزک (Salvia lriifolia Benth). پلاسما و نشانگرهای زیستی، 3 (2)، 7-1. https://www.magiran.com/p867043
رضایی، مجتبی (1387)، گزارش نهایی طرح بررسی اثر آبیاری تناوبی و مقادیر مختلف کود نیتروژن بر عملکرد برنج رقم محلی هاشـمی. انتشارات موسسه تحقیقات برنج ایران، رشت.
رضایی، مجتبی (1402). گزارش نهایی طرح برآورد مطالعة بهره‌وری آب و مصرف نیتروژن در مدیریت‌های مختلف آبیاری در لاین‌های امیدبخش برنج. انتشارات موسسه تحقیقات برنج ایران، رشت.
رضایی، مجتبی، امیری، ابراهیم، و معتمد، محمدکریم (1390). اثر آبیاری تناوبی و مقادیر مختلف نیتروژن بر عملکرد و اجزای عملکرد برنج رقم محلی هاشمی در گیلان. زراعت (پژوهش و سازندگی)، 24(4)، 67-57. https://www.magiran.com/p1028700
رضایی، مجتبی، و نحوی، مجید. (1382). اثر دور آبیاری بر مقدار مصرف آب و عملکرد برنج در گیلان. مجموعه مقالات یازدهمین همایش کمیته ملی آبیاری و زهکشی ایران. 83، 233-240.
علیزاده، مریم، میرزایی، فرهاد، و سهرابی، تیمور (1390). بررسی آزمایشگاهی ﺗﺄثیر زئولیت بر رفتار خاک‌های شالیزاری منطقه گیلان در مراحل بروز ترک در حالت آبیاری تناوبی. آب و خاک، 25(5)، 1138-1146. doi: 10.22067/jsw.v0i--.11226
کوچکی، عوض، افشین،‌ سلطانی، و مهدی،‌ عزیزی (1392). اکوفیزیولوژی گیاهی. انتشارات جهاد دانشگاهی مشهد. 272 صفحه.
وزارت جهاد کشاورزی (1402). آمارنامه کشاورزی (جلد اول: محصولات زراعی). معاونت برنامه‌ریزی اقتصادی، ‌مرکز آمار، فناوری اطلاعات ‌و‌ ارتباطات.
یزدانی، محمدرضا، اسعدی اسکویی، ابراهیم، رحمانی، اصغر، دواتگر، ناصر، و دلسوز خاکی، بهاره (1402). تحلیل تغییرات زمانی و مکانی آب مورد‌نیاز گِلخرابی در اراضی شالیزاری شبکه آبیاری سپیدرود با استفاده از اطلاعات رطوبت خاک ماهواره SMAP. پژوهش آب در کشاورزی، 37 (3)، 243-223. doi: 10.22092/jwra.2023.360376.952
 
References
 
Ahmadi, S.H., Mosallaeepour, E., Kamgar-Haghighi, A.A., & Sepaskhah, A.R. (2015). Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resources Management, 29, 2837-2853. doi: 10.1007/s11269-015-0973-3
Alishiri, R., Paknejad, F., & Aghayari, F. (2014). Simulation of sugarbeet growth under different water regimes and nitrogen levels by AquaCrop. International Journal of Biosciences. 4, 1–9. doi: 10.12692/ijb/4.4.1-9
Alizadeh, M., Mirzaei, F., & Sohrabi, T. (2011). Laboratory study the effects of zeolite on Guilan province’s paddy’s soils behaviors in the occurrence of difference stages of the during cracks intermittent irrigation. Water and Soil, 25(5), 1138-1146. doi: 10.22067/jsw.v0i--.11226 [In Persian]
Amiri, E., Rezaei, M., & Bannayan Awal, M. (2011). Evaluation of the rice growth model ORYZA2000 under nitrogen and water limited conditions (calibration and validation). Water and Soil, 25(4), 757-769. doi: 10.22067/jsw.v0i0.10206 [In Persian]
Andarzian, B., Bannayan, M., Steduto, P., Mazraeh, H., Barati, M.E., Barati, M.A., & Rahnama, A. (2011). Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management, 100(1), 1-8. doi: 10.1016/j.agwat.2011.08.023
Araya, A., Habtu, S., Hadgu, K.M., Kebede, A., & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), 1838-1846. doi: 10.1016/j.agwat.2010.06.021
Arivelarasan, T., Manivasagam, V.S., Geethalakshmi, V., Bhuvaneswari, K., Natarajan, K., Balasubramanian, M., Gowtham, R., & Muthurajan, R. (2023). How far will climate change affect future food security? An inquiry into the irrigated rice system of Peninsular India. Agriculture. 13(3): 551. doi: 10.3390/agriculture13030551
Bandumula, N. (2018). Rice production in Asia: Key to global food security. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1323-1328. doi: 10.1007/s40011-017-0867-7
Barzikar, M.A., Egdernezhad, A., Tafteh, A., & Ebrahimipak, N.A. (2020). Wheat yield and water productivity simulation in Hendijan plain using AquaCrop model. Water Management in Agriculture, 7(1), 53-64. doi: 20.1001.1.24764531.1399.7.1.6.3 [In Persian]
Battisti, R., Sentelhas, P.C., & Boote, K.J. (2017). Inter-comparison of performance of soybean crop simulation model and their ensemble in southern Brazil. Field Crop Research, 200, 28–37. doi: 20.1001.1.24764531.1399.7.1.6.3
Bouman, B.A.M., Kropff, M.J., Tuong, T.P., Wopereis, M.C.S., ten Berge, H.F.M., & van Laar, H.H. (2001). ORYZA2000: Modeling Lowland Rice. Los Banos, Philippines, 235 pages.
Cusicanqui, J., Dillen, K., Geerts, S., Raes, D., Mathijs, E., & García, M. (2013). Economic assessment at farm level of the implementation of deficit irrigation for quinoa production in the Southern Bolivian Altiplano. Spanish Journal of Agricultural Research, 11(4), 894-907. doi: 10.5424/sjar/2013114-4097
de Roos, S., De Lannoy, G.J., & Raes, D. (2021). Performance analysis of regional AquaCrop (v6.1) biomass and surface soil moisture simulations using satellite and in situ observations. Geoscientific Model Development, 14(12), 7309-7328. doi: 10.5194/gmd-14-7309-2021
Dehghan Moroozeh, A., Farhadi Bansouleh, B., Ghobadi, M., & Ahmadpour, A. (2023). Assessment of DSSAT and AquaCrop models to simulate soybean and maize yield under water stress conditions. Spanish Journal of Agricultural Research, 21(3), e1201. doi: 10.5424/sjar/2023213-19918
Dercas, N., Dalezios, N.R., Stamatiadis, S., Evangelou, E., Glampedakis, A., Mantonanakis, G., & Tserlikakis, N. (2022). AquaCrop simulation of winter wheat under different N. management practices. Hydrology, 9(4), 56. doi: 10.3390/hydrology9040056
Dias, M., Navaratne, C., Weerasinghe, K., & Hettiarachchib, R. (2016). Application of DSSAT crop simulation model to identify the changes of rice growth and yield in Nilwala river basin for mid-centuries under changing climatic conditions. Procedia Food Science, 6, 159–163. doi: 10.1016/j.profoo.2016.02.039
Doorenbos, J., & Kassam, A.H. (1979). Yield response to water. Irrigation and Drainage Paper, 33, 257. doi: 10.1016/B978-0-08-025675-7.50021-2
Du, W., Xuechao, H., Shamaila, Z. & Hu, Z. (2011). Yield and biomass prediction testing of AquaCrop model for winter wheat. Transactions of the Chinese Society for Agricultural Machinery. 42, 174–178.
Ebrahimi Pak, N., Egder Nejad, A., Tafteh, A., & Khodadadi Dehkordi, D. (2018). Evaluation of AquaCrop model to simulate canola (Brassica napus) yield under deficit irrigation scenarios in Ghazvin plain. Iranian Journal of Soil and Water Research, 49(5), 1003-1015. doi: 10.22059/ijswr.2018.236158.667708 [In Persian]
Elsadek, E., Zhang, K., Mousa, A., Ezaz, G.T., Tola, T.L., Shaghaleh, H., & Alhaj Hamoud, Y. (2023). Study on the in-field water balance of direct-seeded rice with various irrigation regimes under arid climatic conditions in egypt using the AquaCrop model. Agronomy, 13(2), 609. doi: 10.3390/agronomy13020609
FAO. (2020). Food and Agricultural Organization of the United Nations (sited in: http://www.fao.org/index_en.htm/, 1/1/2020)
FAO. (2023). Food and Agricultural Organization of the United Nations (sited in: http://www.fao.org/index_en.html/,15/11/2023)
Farahani, H.J., Izzi, G., & Oweis, T.Y. (2009). Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agronomy Journal, 101(3), 469-476.  doi: 10.2134/agronj2008.0182s
Gurgel, A.C., Reilly, J. & Blanc, E. (2021). Challenges in simulating economic effects of climate change on global agricultural markets. Climate Change. 166, 29. doi: 10.1007/s10584-021-03119-8
Heng, L.K., Hsiao, T.C., Evett, S., Howell, T. & Steduto, P. (2009). Validating the FAO AquaCrop model for irrigated and water deficit field maize. Agronomy Journal. 101, 488–498. doi: 10.2134/agronj2008.0029xs
Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448-459.  doi: 10.2134/agronj2008.0218s
Hussein, F., Janat, M., & Yakoub, A. (2011). Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Spanish Journal of Agricultural Research, 9(4), 1319-1330. doi: 10.5424/sjar/20110904-358-10
Iqbal, M.A., Shen, Y., Stricevic, R., Pie, H., Sun, H., Amiri, E., Penas, A., & Rio, S.D. (2014). Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management. 135, 61–72 doi: 10.1016/j.agwat.2013.12.012
Ishfaq, M., Farooq, M., Zulfiqar, U., Hussain, S., Akbar, N., Nawaz, A., & Anjum, S. A. (2020). Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agricultural Water Management, 241, 106363. doi: 10.1016/j.agwat.2020.106363
Jin, L., Wei, D., & Yin, D. (2023). Research progress on greenhouse microclimate simulation and greenhouse crop growth modeling. Journal of Shanxi Agricultural University (Natural Science Edition). 43, 55–64. doi: 10.1016/j.compag.2019.04.013
Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., & Wang, J. (2018). A review of data assimilation of remote sensing and crop models. European Journal of Agronomy, 92, 141-152. doi: 10.1016/j.eja.2017.11.002
Jorge, A., Coulibaly, S., Baki, G., Camacho, J.L., Dao, A., Migraine, J.B. & Marta, A.D. (2023). Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region. Agricultural Water Management, 287, 108430. doi: 10.1016/j.agwat.2023.108430
Katerji, N., Campi, P., & Mastrorilli, M. (2013). Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management, 130, 14-26. doi: 10.1016/j.agwat.2013.08.005
Koochaki, A., Soltani, A., Azizi, M. (2013). Plant ecophysiology. Academic Jihad Publications: Mashhad. 272 pages. [In Persian]
Kuzma, S., Saccoccia, L., & Chertock, M., (2023). 25 Countries, Housing one-quarter of the population, face extremely high-water stress. World Resources Institute. (sited in: https://www.wri.org/insights/highest-water-stressed-countries)
Li, F., Yu, D., & Zhao Y. (2019). Irrigation scheduling optimization for cotton based on the AquaCrop model. Water Resources Management, 33, 39–55. doi: 10.1007/s11269-018-2087-1
Maniruzzaman, M., Talukder, M.S.U., Khan, M.H., Biswas, J.C., & Nemes, A. (2015). Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh. Agricultural Water Management, 159, 331-340. doi: 10.1016/j.agwat.2015.06.022
Margarita, G.V., & Elías, F. (2012). Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 36, 21–31. doi: 10.1016/j.eja.2011.08.003
Martínez-Romero, A., López-Urrea, R., Montoya, F., Pardo, J.J., & Domínguez, A. (2021). Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes. Agricultural Water Management, 258, 107219. doi: 10.1016/j.agwat.2021.107219
Matthews, R.B., Rivington, M., Muhammed, S., Newton, A.C., & Hallett, P.D. (2013). Adapting crops and cropping systems to future climates to ensure food security: The role of crop modelling. Global Food Security, 2(1), 24-28. doi: 10.1016/j.gfs.2012.11.009
Mbangiwa, N.C., Savage, M.J., & Mabhaudhi, T. (2019). Modelling and measurement of water productivity and total evaporation in a dryland soybean crop. Agricultural and Forest Meteorology. 266–267, 65–72. doi: 10.1016/j.agrformet.2018.12.005
Mibulo, T., & Kiggundu, N. (2018). Evaluation of FAO AquaCrop model for simulating rainfed maize growth and yields in Uganda. Agronomy, 8, 238. doi: 10.3390/agronomy8110238
Ministry of Agriculture Jihad. (2023). Agricultural Statistics (Volume 1: Crops). Economic planning deputy, statistics center, information and communication technology. [In Persian]
Mondal, M.S., Saleh, A.F.M., Akanda, M.A.R., Biswas, S.K., Moslehuddin, A.Z.M., Zaman, S., ... & Clarke, D. (2015). Simulating yield response of rice to salinity stress with the AquaCrop model. Environmental Science: Processes & Impacts, 17(6), 1118-1126. doi: 10.1039/C5EM00095E
Mostafa, M., Luo, W., Zou, J., & Salem, A. (2023). Optimizing rice irrigation strategies to maximize water productivity: A simulation study using AquaCrop model for the Yanyun irrigation district, Yangzhou, China. Earth, 4(3), 445-460. doi: 10.3390/earth4030024
Nikolaus, B. (2013). Rice production in Africa: simulation of rice production and water productivity using AquaCrop in an inland valley in Central Benin. Master's thesis, Department of Hydrology and Water Resources Management, Kiel University, Germany.
Paredes, P., de Melo-Abreu, J.P., Alves, I., & Pereira, L.S. (2014). Assessing the performance of the FAO AquaCrop model to estimate maize yields and water use under full and deficit irrigation with focus on model parameterization. Agricultural Water Management, 144, 81-97. doi: 10.1016/j.agwat.2014.06.002
Puma-Cahua, J., Belizario, G., Laqui, W., Alfaro, R., Huaquisto, E., & Calizaya, E. (2023). Evaluating the yields of the rainfed potato crop under climate change scenarios using the AquaCrop model in the Peruvian Altiplano. Sustainability, 16(1), 71. doi: 10.3390/su16010071
Raes, D., (2002). BUDGET, A soil water and salt balance model. Reference Manual. Faculty of Agricultural and Applied Biological Sciences Institute for Land and Water Management. Belgium.
Raes, D., Steduto, P., Hsiao, T.C., & Fereres, E. (2009). AquaCrop-The FAO crop model for predicting yield response to water: II. Main algorithms and software description. Agronomy Journal. 101, 438-447. doi: 10.2134/agronj2008.0140s
Ran, H., Kang, S., Li, F., Du, T., Tong, L., Li, S., & Zhang, X. (2018). Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agricultural Water Management, 203, 438-450. doi: 10.1016/j.agwat.2018.01.030
Razzaghi, F., Zhou, Z., Andersen, M. N., & Plauborg, F. (2017). Simulation of potato yield in temperate condition by the AquaCrop model. Agricultural Water Management, 191, 113-123. doi: 10.1016/j.agwat.2017.06.008
Rezaei, M., & Nahvi, M. (2003). Effect of different irrigation intervals on water use efficiency and yield of rice in Guilan. Proceeding of 11th Conference of Iranian National Committee on Irrigation and Drainage. Tehran, Iran, p. 674. [In Persian]
Rezaei, M. (2008). The final report of the research project on the effect of intermittent irrigation and different amounts of nitrogen fertilizer on the yield of Hashemi local variety rice. Publications of Rice Research Institute of Iran, Rasht. [In Persian]
Rezaei, M. (2023). The final report of the research project on the study and comparison of water productivity and nitrogen application in different irrigation management of some rice promising lines. Publications of Rice Research Institute of Iran, Rasht. [In Persian]
Rezaei, M., Amiri, E., & Motamed, M.K. (2012). Effects of irrigation interval and nitrogen fertilizer on yield and water productivity of rice (Hashemi cultivar) in Guilan. Agronomy Journal (Pajhouhesh & Sazandegi), 24 (4): 57-67. https://www.magiran.com/p1028700 [In Persian]
Richards, M., & Ole, B. (2014). Alternate wetting and drying in irrigated rice. IRRI CCAFS and Info Notes. (sited in: http://www.agritech.tnau.ac.in/agriculture/pdf/csa_pdf/Alternate_wetting_and_drying_in_irrigated_rice_InfoNote.pdf)
Rinaldi, M., Losavio, N., & Flagella, Z. (2003). Evaluation and application of the OILCROP–SUN model for sunflower in southern Italy. Agricultural Systems, 78(1), 17-30. doi: 10.1016/S0308-521x(03)00030-1
Roderick, M., Florencia, G.R., Rodriguez, G.D.P., Lampayan, R.M., & Bouman. B.A.M. (2011). Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy. 36(2): 280-288. doi: 10.1016/j.foodpol.2010.11.026
Roshani, S., Mohassel, M.H., Haghighi, R.S., & Amiri, E. (2021). The Assessment of AquaCrop model in predicting rice genotypes grain and biological yield under water management conditions. Polish Journal of Environmental Studies, 30(3), 2283-2291. doi: 10.15244/pjoes/125940
Saadati, Z., Pirmoradian, N. & Rezaei, M. (2011). Calibration and validation of AquaCrop model in rice growth simulation under different irrigation managements. ICID 21st International Congress on Irrigation and Drainage, Tehran, Iran.
Sandhu, R., & Irmak, S. (2019). Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agricultural Water Management. 223, 105687. doi: 10.1016/j.agwat.2019.105687
Shrestha, N., Raes, D., Vanuytrecht, E., Sah, S.K., & (2013). Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management. 122, 53–62. doi: 10.1016/j.agwat.2013.03.003
Smith, M. (1992). CROPWAT: A computer program for irrigation planning and management. Food & Agriculture Organization, 127 pages.
Steduto, P., Hsiao, T.C, Raes, D., & Fereres, E. (2009) AquaCrop-The FAO crop model to simulate yield response to water. water: I. Concepts and underlying principles. Agronomy Journal. 101: 426–437. doi: 10.2134/agronj2008.0139s
Stricevic, R., Cosic, M., Djurovic, N., Pejic, B., & Maksimovic, L., (2011). Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize sugar beet and sunflower. Agricultural Water Management. 98, 1615–1621. doi: 10.1016/j.agwat.2011.05.011
Stričević, R., Lipovac, A., Djurović, N., Sotonica, D., & Ćosić, M. (2023). AquaCrop model performance in yield, biomass, and water requirement simulations of common bean grown under different irrigation treatments and sowing periods. Journal of Horticultural Sciences, 9(4), 507. doi: 10.3390/horticulturae9040507
Takács, S., Csengeri, E., Pék, Z., Bíró, T., Szuvandzsiev, P., Palotás, G., & Helyes, L. (2021). Performance evaluation of AquaCrop model in processing tomato biomass, fruit yield and water stress indicator modelling. Water, 13(24), 3587. doi: 10.3390/w13243587
Tarahomi, G., Lahuti, M., & Abasi, F. (2010). Effects of drought stress on changes in soluble carbohydrates, chlorophyll and potassium in (Salvia leriifolia Benth). Journal of Plasma & Biomarkers, 3(2), 1-7. https://www.magiran.com/p867043 [In Persian]
Van Diepen, C.V., Wolf, J.V., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: A simulation model of crop production. Soil Use and Management, 5(1), 16-24. doi: 10.1111/j.1475-2743.1989.tb00755.x
Wang, S., Wang, D., Liu, T., Liu, Y., Luo, M., Li, Y., & Li, K. (2024). Simulation of winter wheat growth dynamics and optimization of water and nitrogen application systems based on the AquaCrop model. Agronomy, 14(1), 110. doi: 10.3390/agronomy14010110
Yazdani, M.R., Asadi Oskoue, E., Rahmani, A., Davatgar, N., & Delsouz Khak, B. (2023). Analysis of temporal and spatial variations of water requirement for puddling in paddy fields of Sepidrood irrigation network using SMAP satellite soil moisture information. Journal of Water Research in Agriculture (Soil and Water Sciences.). 37(3): 223-243. doi: 10.22092/jwra.2023.360376.952 [In Persian]
Zeleke, K.T. (2019). AquaCrop calibration and validation for faba bean (Vicia faba L.) under different agronomic managements. Agronomy, 9(6), 320. doi: 10.3390/agronomy9060320
Zhai, B., Fu, Q., Li, T., Liu, D., Ji, Y., Li, M., & Cui, S. (2019). Rice irrigation schedule optimization based on the AquaCrop model: study of the Longtouqiao irrigation district. Water, 11(9), 1799. doi: 10.3390/w11091799
Zhou, D., Wang, H., Wang, X., Wang, F., Zhang, J., & Ma, D. (2024). Evaluation of AquaCrop’s ability to simulate water stress based on 2-year case study of maize crop. Agronomy, 14(2), 354. doi: 10.3390/agronomy14020354