Probability-based modeling for a quantitative wildfire risk analysis in the protected areas of Guilan Province

Document Type : Research/Original/Regular Article

Authors

1 Associate Professors, Department of Forest Science and Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Former Ph.D. Student, Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Karaj, Iran

Abstract

Extended Abstract

Introduction

Wildfires reveal evidence of forest soil, water, and vegetation disturbances resulting from various interacting natural and human factors that create patterns that vary spatially and temporally. Fire risk assessment allows for identifying these factors and estimating their area of influence, thereby determining locations at high fire risk. Fire risk assessment typically involves the ignition probability (IP) and burn probability (BP) modeling of natural and human-made resources, as well as identifying resource responses to fires of varying severity. In recent decades, wildfires have caused significant damage to the Hyrcanian forests in northern Iran, even in the protected areas. Therefore, this study focuses on the spatial distributions of fire size, fire frequency, IP, and BP as essential components of the fire risk framework. First, a historical fire database (including ignition points, burned area, etc.) was prepared using available resources and field surveying. Second, a modeling approach using a limited number of auxiliary variables representing the fire environment (fuel, topography, and weather) and the historical fires (1992-2022) was implemented to calculate IP and BP. The spatial distribution of these parameters helps improve decision-making in fire prevention and control strategies.

Materials and Methods

Guilan Province is located in northern Iran and has an area of 14,044 km2 with an average elevation of 741 m above sea level. This province has 20 natural protected areas, which cover a total of 256,488 ha. ArcGIS 10.8 was used to create a historical fire database in the study area by digitizing fires between 1992 and 2022 from maps or by importing information directly from the previous GIS datasets. Point process models (PPMs) were used to analyze the spatial distribution of fire frequency. PPMs are a regression approach to model point data (i.e., geographic coordinates) for the number of times a 100-m pixel burns between 1992 and 2022. An existing raster map of the study area was converted to points by calculating the center of each pixel, and each point was assigned a frequency. Furthermore, IP was calculated as the average ignition probability occurring over a year in a raster pixel. To help use the fire ignition density to plan preventive activities, the output values were classified into five classes reflecting ignition occurrences (from very low to very high). Finally, the fire risk using BP was assessed by considering topography, fuel loads, and weather using FlamMap. To calculate BP, 1000 random ignition points were created based on the distribution of historical ignition points in the study area. The maximum fire simulation time was set to 6 hr (the average fire duration in the area).

Results and Discussion

There are 186 recorded fires (total burned area of 2232 ha) with an average annual number of 6 fires (average burned area of 12 ha) in the protected areas. Fires <10 ha accounted for 62.4% and 30.8% of the fire number and the burned area, respectively. Fires (10-50 ha) accounted for 32.8% and 46.2% of the fire number and the burned area, respectively. Fires (50-100 ha) accounted for 2.7% and 14.5% of the fire number and the burned area, respectively. Finally, fires >100 ha accounted for <0.5% of the fire number but alone accounted for 8.4% of the burned area. The distribution of fire frequency ranged from 0 to 6. The largest protected areas (40%) experienced no fires. 13% of these areas had 1-2 fire frequencies. Furthermore, 48% of this area had more than two fire frequencies. About 35% of the study area had very low and low IP values, 36% had medium IP, and 18 and 11% had high and very high IP, respectively. 88% of the study area had low and moderate BP values, and 12% had high and very high predicted values. Two fire regimes can be distinguished in the area, one with relatively high fire frequency and BP (mainly at higher elevations) and the other with low fire frequency and BP (at lower elevations). High fire frequency and BP is very limited in extent and occurs in the patches in the southern area. In contrast, low fire frequency and BP regime is the most widespread regime in the area (except for the southern part).

Conclusion

According to the simulated patterns of fire frequency, IP, and BP in the study area, a clear distinction between the actual historical fire perimeters and the predicted burn pattern is that there are areas of moderate to high IP where fires have not occurred in the past 30 years. This is particularly evident in the southern and central parts of the area, where fires have either not occurred or have been very limited in extent. Therefore, a justifiable assessment could be that the likelihood of fire spread and vegetation communities undergoing extensive and long-term changes following the fire is high shortly. Although this study focuses on the protected forest areas, this approach can be applied to fire risk modeling at larger scales. This allows for broader application in natural resources management and planning at regional and national levels. It also provides a comprehensive tool for assessing and managing forest vegetation, soil, and water vulnerability.

Keywords

Main Subjects


منابع
امین املشی، مسعود، قدس خواه، مهرداد، بنیاد، امیراسلام، پوربابایی، حسن، جعفری، مصطفی، و غلامی، وحید (1394). ارزیابی مقدار مواد سوختنی پس از آتش‌سوزی در جنگل‌کاری‌های کاج تدا با استفاده از خط‌نمونه و روش FLM (مطالعه موردی: جنگل‌کاری‌های تَخسَم در استان گیلان). تحقیقات جنگل و صنوبر ایران، 23(3 (پیاپی 3))، 572-562. doi:10.22092/ijfpr.2015.105660
جان‌بزرگی، محمد، حنیفه‌پور، مهین، و خسروی، حسن (1400). تغییرات زمانی خشکسالی هواشناسی-هیدرولوژیکی (مطالعه موردی: استان گیلان). مدل‌سازی و مدیریت آب و خاک، 1(2)، 13-1.  doi:10.22098/mmws.2021.1215
جهدی، رقیه (1402). آتش‌سوزی‌ها در توده‌های جنگل‌کاری تنک‌شده و تنک‌نشده در شمال ایران. جغرافیا و مخاطرات محیطی، 12(1)، 101-87. doi:10.22067/geoeh.2022.74988.1164
جهدی، رقیه (1401). ارزیابی درک خطر و اقدامات موثر برای کاهش آسیب آتش در منطقه جنگلی سیاهکل در استان گیلان. پژوهش‌های محیط‌زیست، 13(26)، 187-173. doi:10.22034/EIAP.2023.169985
صدیقی پاشاکی، محدثه، قدس خواه دریایی، مهرداد، حیدری، مهدی عادل، محمد نقی، و صادق کوهستانی، جواد (1393). اثرآتش‌سوزی روی برخی خصوصیات فیزیکی و شیمیایی خاک در جنگل‌های استان گیلان (مطالعه موردی: منطقه سراوان). پژوهش‌های آبخیزداری، 27(3)، 106-96. doi:10.22092/wmej.2014.106897
عزیزی، قاسم، و یوسفی، یداله (1388). گرمباد (باد فون) و آتش‌سوزی جنگل در استان‌های مازندران و گیلان (نمونه: آتش‌سوزی تاریخ 25-30 آذر 1384). تحقیقات جغرافیایی، 24(1)، 28-3. https://www.sid.ir/paper/30011/fa
References
Adams, V.M., Chauvenet, A.L.M., Stoudmann, N., Gurney, G.G., Brockington, D., & Kuempel, C.D. (2023). Multiple-use protected areas are critical to equitable and effective conservation. One Earth, 6 (9), 1173-1189.
Amin Amlashi, M., Ghodskhah, M., Bonyad, A.I., Pourbabaei, H., Jafari, M., & Gholami, V. (2015). Evaluation of fuel load following fire in Loblolly Pine (Pinus taeda L.) plantations using line sampling and of FLM method (Case study: Takhsam plantations in Guilan Province). Forest and Poplar Research, 23(3), 562-572. doi:10.22092/ijfpr.2015.105660 [In Persian]
Azizi, G.H., & Yousofi, Y. (2009). Foehn and forest fire in Mazandaran and Gilan provinces a case study: the forest fire from December 16 - 21, 2005. Geographical Research, 24(1), 3-28. https://sid.ir/paper/30011/en [In Persian]
Benali, A., Sá, A.C.L., Pinho, J., Fernandes, P.M., & Pereira, J.M.C. (2021). Understanding the impact of different landscape-level fuel management strategies on wildfire hazard in central Portugal. Forests, 12, 1–24.
Bradley, C.M., Hanson, C.T., & DellaSala, D.A. (2016). Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States? Ecosphere, 7(10), e01492.
Brooks, M.L., Minnich, R., & Matchett, J.R. (2018). “Southeastern deserts bioregion,” in Fire in California’s Ecosystems, 2nd Edn, eds J.W. Van Wagtendonk, N.G. Sugihara, S.L. Stephens, A.E. Thode, K.E. Shaffer, and J. Fites-Kaufman (Berkeley, CA: University of California Press).
Buonanduci, M.S., Donato, D.C., Halofsky, J.S., Kennedy, M.C., & Harvey, B.J. (2024). Few large or many small fires: using spatial scaling of severe fire to quantify effects of fire‑size distribution shifts. Ecosphere, 15(6), e4875. doi:10.1002/ecs2.4875
Cao, Y., Wang, M., & Liu, K. (2017). Wildfire susceptibility assessment in southern China: A Comparison of Multiple Methods. Disaster Risk Science, 8, 164–181. doi:10.1007/s13753-017-0129-6
Catry, F.X., Rego, F.C., Bação, F.L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. Wildland Fire, 18, 921–931. doi:10.1071/WF07123
Cleef, L., Yang, M., Bouchaut, B., & Reniers, G. (2024). Fire risk assessment tools for the built environment - An explorative study through a developers’ survey. Fire Safety, 146, 104169. doi: 10.1016/j.firesaf.2024.104169
D’Este, M., Ganga, A., Elia, M., Lovreglio, R., Giannico, V., Spano, G., Colangelo, G., Lafortezza, R., & Sanesi, G. (2020). Modeling fire ignition probability and frequency using Hurdle models: a cross-regional study in Southern Europe. Ecological Processes, 9, 54. doi:10.1186/s13717-020-00263-4
Dawid, P., Earman, J., Howson, C., Miller, D., & Sober, E. (2005). Bayes's theorem, Oxford University Press, Oxford, UK.
Depicker, A., De Baets, B., & Baetens, J.M. (2020). Wildfire ignition probability in Belgium. Natural Hazards and Earth System Sciences, 20, 363–376. doi:10.5194/nhess-20-363-2020
Dinerstein, E., Vynne, C., Sala, E., Joshi, A.R., Fernando, S., Lovejoy, T.E., Mayorga, J., Olson, D., Asner, G.P., Baillie, J.E.M., Burgess, N.D., Burkart, K., Noss, R.F., Zhang, Y.P., Baccini, A., Birch, T., Hahn, N., Joppa, L.N., & Wikramanayake, E. (2019). A global deal for nature: guiding principles, milestones, and targets. Science Advances, 5, eaaw2869. doi:10.1126/sciadv. aaw2869
Dorph, A., Marshall, E., Parkins, K.A., & Penman, T.D. (2022). Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia. Natural Hazards and Earth System Sciences, 22, 3487–3499, doi:10.5194/nhess-22-3487-2022
Edwards, R.B., Naylor, R.L., Higgins, M.W., & Falcon, W.P. (2020). Causes of Indonesia’s forest fires. World Development, 127, 104717. doi: 10.1016/j.worlddev.2019.104717
Fadaei, Z., Kavian, A., Solaimani, K., Sarabsoreh, L. Z., Kalehhouei, M., Zuazo, V.H.D., & Rodrigo-Comino, J. (2022). The Response of soil physicochemical properties in the Hyrcanian Forests of Iran to forest fire events. Fire, 5(6), 195. doi:10.3390/fire5060195
Finney, M.A. (2006). An overview of FlamMap fire modeling capabilities, in: fuels management-how to measure success: Conference Proceedings, edited by: Andrews, P. L., Butler, B. W., and comps, RMRS-P-41. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Portland, OR, 213–220. https://research.fs.usda.gov/treesearch/25948
Firewords. (2018). Glossary of fire science terminology. http://www.firewords.net/. Accessed 16 Nov 2024.
Fisher, J., Allen, S., Woomer, A., & Crawford, A. (2023). Protected areas under pressure: An online survey of protected area managers regarding social and environmental conservation target attainment and stakeholder conflicts. World Development Sustainability, 3, 100084. doi: 10.1016/j.wds.2023.100084
González-Pelayo, O., Prats, S.A., van den Elsen, E., Malvar, M.C., Ritsema, C., Bautista, S., & Keizer, J.J. (2024). The effects of wildfire frequency on post-fire soil surface water dynamics. Forest Research, 143, 493–508. doi:10.1007/s10342-023-01635-z
Guo, F., Su, Z., Wang, G., Sun, L., Tigabu, M., Yang, X., & Hu, H. (2017). Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Science of the Total Environment, 605-606, 411-425.
Hardy, C. (2005). Wildland fire hazard and risk: problems, definitions, and context. Forest Ecology and Management, 211, 73-82.
 doi: 10.1016/j.foreco.2005.01.029
Islam, S.M.T. (2023). UAS Path Planning for Dynamical Wildfire Monitoring with Uneven Importance. Ph.D. Dissertation, Georgia State University. 105 pp. doi:10.57709/35860180
Jahdi, R. (2023a). Wildfires in thinned versus unthinned plantation-type stands in Northern Iran. Geography and Environmental Hazards, 12(1), 87-101. doi:10.22067/geoeh.2022.74988.1164 [In Persian]
Jahdi, R. (2023b). Assessment of risk perception and effective fire mitigation measures in Siahkal forest area in Guilan Province. Environmental Researches, 13(26), 173-187. doi:10.22034/EIAP.2023.169985 [In Persian]
Jahdi, R., Salis, M., Alcasena, F., & Del Giudice, L. (2023). Assessing the effectiveness of silvicultural treatments on fire behavior in the Hyrcanian Temperate Forests of Northern Iran. Environmental Management, 72, 682–697. doi:10.1007/s00267-023-01785-1
Janbozorgi, M., Hanifepour, M., & Khosravi, H. (2021). Temporal changes in meteorological-hydrological drought (Case study: Guilan Province). Water and Soil Management and Modeling, 1 (2), 1-13. doi:10.22098/mmws.2021.1215 [In Persian]  
Klinger, R., Underwood, E.C., McKinley, R., & Brooks, M.L. (2021). Contrasting geographic patterns of ignition probability and burn severity in the Mojave Desert. Frontiers in Ecology and Evolution, 9, 593167. doi:10.3389/fevo.2021.593167
Korb, J.E., Fornwalt, P.J., & Stevens-Rumann, C.S. (2019). What drives ponderosa pine regeneration following wildfire in the western United States? Forest Ecology and Management, 454, 117663. doi: 10.1016/j.foreco.2019.117663
Lesmeister, D.B., Sovern, S.G., Davis, R.J., Bell, D. M., Gregory, M.J., & Vogeler, J.C. (2019). Mixed-severity wildfire and habitat of an old-forest obligate. Ecosphere, 10 (4), e02696. doi:10.1002/ecs2.2696.
Lucas-Borja, M.E., Plaza-Alvarez, P.A., Xu, X., Carra, B.G., & Zema, D.A. (2023). Exploring the factors influencing the hydrological response of soil after low and high-severity fires with post-fire mulching in Mediterranean forests. Soil and Water Conservation Research, 11(1), 169-182.
 doi: 10.1016/j.iswcr.2022.08.002
McCarthy, J., Tyukavina, S., Weisse, M., & Harris, N. (2024). New data confirms: forest fires are getting worse. World Resource Institute. Accessed November 17, 2024.
McLauchlan, K.K., Higuera, P.E., Miesel, J., Rogers, B.M., Schweitzer, J., Shuman, J.K., Tepley, A.J., Varner, J.M., Veblen, T.T., Adalsteinsson, S.A., Balch, J.K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M.L., Coen, J., Crandall, R., Daniels, L., et al. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Ecology, 108(5), 2047-2069. doi:10.1111/1365-2745.13403
Mishra, B., Panthi, S., Poudel, S., & Ghimire, B.R. (2023). Forest fire pattern and vulnerability mapping using deep learning in Nepal. Fire Ecology, 19(3), 1-15. doi:10.1186/s42408-022-00162-3
Morovati, M., & Karami, P. (2024). Modeling the seasonal wildfire cycle and its possible effects on the distribution of focal species in Kermanshah Province, western Iran. PloS one, 19(10), e0312552.
 doi: 10.1371/journal.pone.0312552
Mulverhill, C., Coops, N.C., Wulder, M.A., White, J.C., Hermosilla, T., & Bater, C.W. (2024). Multidecadal mapping of status and trends in annual burn probability over Canada's forested ecosystems. ISPRS Photogrammetry and Remote Sensing, 209, 279-295.
Nieman, W.A., Van Wilgen, B.W., Radloff, F. G., Tambling, C.J., & Leslie, A.J. (2022). The effects of fire frequency on vegetation structure and mammal assemblages in a savannah-woodland system. African Journal of Ecology, 60(3), 407–422. doi:10.1111/aje.12971
Radford, D.A.G., Maier, H.R., van Delden, H., Zecchin, A.C., & Jeanneau, A. (2024). Predicting burn probability: Dimensionality reduction strategies enable accurate and computationally efficient metamodeling. Journal of Environmental Management, 371, 123086. doi: 10.1016/j.jenvman.2024.123086
Roman, M., Zubieta, R., Ccanchi, Y., Martínez, A., Paucar, Y., Alvarez, S., Loayza, J., & Ayala, F. (2024). Seasonal effects of wildfires on the physical and chemical properties of soil in Andean grassland ecosystems in Cusco, Peru: Pending Challenges. Fire, 7(7), 259. doi:10.3390/fire7070259
Rothermel, R.C. (1972). A mathematical model for predicting fire spread in wildland fuels; research paper INT-115; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA.
Sakellariou, S., Sfougaris, A., Christopoulou, O., & Tampekis, S. (2022). Integrated wildfire risk assessment of natural and anthropogenic ecosystems based on simulation modeling and remotely sensed data fusion. International Journal of Disaster Risk Reduction, 78, 103129. doi: 10.1016/j.ijdrr.2022.103129
Salavati, G., Saniei, E., Ghaderpour, E., & Hassan, Q.K. (2022). Wildfire risk forecasting using weights of evidence and statistical index models. Sustainability, 14, 3881. doi:10.3390/su14073881
Scott, R.E., & Burgan, J.H. (2005). Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, https://www.fs.usda.gov/rm/pubs_series/rmrs/gtr/rmrs_gtr153.pdf
Shahzad, F., Mehmood, K., Hussain, K. Haidar I, Anees SA, Muhammad S, Ali J, Adnan M, Wang Z, & Feng Z. (2024). Comparing machine learning algorithms to predict vegetation fire detections in Pakistan. Fire Ecology, 20(57) 1-20. doi:10.1186/s42408-024-00289-5
Siddiqui Pashaki, M., QudsKhah Daryayi, M., Heydari, M., Adel, M.N., & Sadegh Kohestani, J. (2014). Effect of fire on some physical and chemical properties of soil in Guilan province forests (case study: Saravan). Watershed Management Researach, 27(3), 96-106. doi:10.22092/wmej.2014.106897 [In Persian]
Singh, S. (2022). Forest fire emissions: a contribution to global climate change. Frontiers in Forests and Global Change, 5, 925480. doi:10.3389/ffgc.2022.925480
Tagestad, J., Brooks, M. L., Cullinan, V., Downs, J., & McKinley, R. (2016). Precipitation regime classification for the Mojave Desert: implications for fire occurrence. Journal of Arid Environments, 124, 388–397. doi: 10.1016/j.jaridenv.2015.09.002
Thompson, M.P., Vogler, K.C., Scott, J.H., & Miller, C. (2022). Comparing risk-based fuel treatment prioritization with alternative strategies for enhancing protection and resource management objectives. Fire Ecology, 18, 26. doi:10.1186/s42408-022-00149-0
Tian, X., Cui, W., & Shu, L. (2020). Evaluating fire management effectiveness with a burn probability model in Daxing’anling, China. Canadian Journal of Forest Research, 50(7), 670-679. doi:10.1139/cjfr-2019-0413
UNEP-WCMC., & IUCN. (2020). Protected planet report 2020. https://livereport.protectedplanet.net/.
Vakili, M., Shakeri, Z., Motahari, S., Farahani, M., Robbins, Z.J., & Scheller, R.M. (2021). Resistance and resilience of Hyrcanian mixed forests under natural and anthropogenic disturbances. Frontiers in Forests and Global Change, 4, 640451. doi:10.3389/ffgc.2021.640451
Villarreal, M.L., Norman, L.M., Yao, E.H., & Conrad, C.R. (2022). Wildfire probability models calibrated using past human and lightning ignition patterns can inform mitigation of post-fire hydrologic hazards. Geomatics, Natural Hazards and Risk, 13(1), 568–590. doi:10.1080/19475705.2022.2039787
WWF. (2022). Living planet report 2022 - building a nature-positive society. Almond, R.E.A., Grooten, M., Juffe Bignoli, D. & Petersen, T. (Eds). WWF, Gland, Switzerland.
Zambon, I., Cerdà, A., Cudlin, P., Serra, P., Pili, S., & Salvati, L. (2019). Road network and the spatial distribution of wildfires in the Valencian community (1993–2015). Agriculture, 9(5), 100. doi:10.3390/agriculture9050100
Zhang, Z., Yang, S., Wang, G., Wang, W., Xia, H., Sun, S., & Guo, F. (2022). Evaluation of geographically weighted logistic model and mixed effect model in forest fire prediction in northeast China. Frontiers in Forests and Global Change, 5, 1040408. doi:10.3389/ffgc.2022.1040408
Ziegler, J.P., Hoffman, C.M., Fornwalt, P.J., Sieg, C.H., Battaglia, M.A., Chambers, M.E., & Iniguez, J.M. (2017). Tree regeneration spatial patterns in Ponderosa Pine forests following stand-replacing fire: influence of topography and neighbors. Forests, 8(10), 391. doi:10.3390/f8100391