Projection the Wind Field in the Future Based on the CMIP5 and CMIP6 Climate Models in Sistan and Baluchestan Province Introduction

Document Type : Research/Original/Regular Article

Authors

1 Assistant Professor, Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan, Iran

2 Ph.D, Department of Civil and Environmental Engineering, Florida A&M University, Florida, United States

Abstract

Introduction

Renewable energy plays a crucial role in reducing greenhouse gas emissions and combating global climate change. Among the various renewable energy sources, wind energy stands out due to its production capacity and rapid technological advancement. This study aims to evaluate the capabilities and uncertainties of CMIP5 and CMIP6 models under two scenarios—RCP4.5 and RCP8.5 for CMIP5, and SSP2-4.5 and SSP5-8.5 for CMIP6—in simulating wind speed. Additionally, it will forecast future changes in wind speed (2014-2100) at six synoptic stations in Sistan and Baluchestan, focusing on the differences between CMIP5 and CMIP6 reports regarding wind energy. This research is the first to examine future wind characteristics in Iran using CMIP6 model outputs while comparing the performance of both CMIP5 and CMIP6 in simulating wind speed in the study area. Wind energy is highly sensitive to climate change, as future alterations in wind flow characteristics will significantly impact electricity generation potential. Therefore, understanding future climate scenarios, especially under varying global warming conditions, is vital for estimating changes in wind energy resources over the coming decades.

Method

Wind speed data were obtained from six synoptic stations operated by I.R. of Iran Meteorological Organization (IRIMO), covering the period from 1990 to 2014, with all stations maintaining continuous data records throughout this timeframe. The data from CMIP5 and CMIP6 climate models were downloaded from the respective websites. This study selected outputs from six general circulation models for the historical period (1990-2014) and the future period (2014-2100) under the emission scenarios SSP2-4.5 and SSP5-8.5 for CMIP6 and RCP4.5 and RCP8.5 for CMIP5. The ability of the CMIP6 and CMIP5 climate models to simulate historical wind speed was evaluated against observational data from Sistan and Baluchestan using statistical criteria, including bias, correlation, and standard deviation. This evaluation determined the capability and accuracy of the models and assessed the uncertainty in their wind speed simulations before applying them to future climate forecasts. A multi-model averaging approach was employed to reduce uncertainties associated with individual models, utilizing the CDFT package in RStudio for downscaling and output bias correction based on cumulative distribution function transformation.

Results and Discussion

Most CMIP models simulated wind speed effectively. The CanESM5 model in CMIP6 demonstrated improved performance compared to CMIP5, yielding results closer to observational data. In contrast, the CMCC-ESM2 and CNRM-CM6-1 models in CMIP6 were less efficient than their CMIP5 counterparts. CMIP5 indicated a decrease in wind speed, while CMIP6 suggested an increase in annual projection, although these changes were not statistically significant. The projected average wind speeds by 2100 are 3.58 m/s and 3.57 m/s for the SSP2-4.5 and SSP5-8.5 scenarios, respectively, while the RCP4.5 and RCP8.5 scenarios predict averages of 3.1 m/s and 3.2 m/s, respectively. The baseline average wind speed from observational data is 3.49 m/s. CMIP5 indicated a decrease in wind speed across all months under both scenarios, with the most significant reductions occurring in spring (-0.47 m/s) and the least in autumn (-0.29 m/s). Conversely, CMIP6 projected increases in wind speed across all seasons, with the highest increase in spring (0.49 m/s) and the lowest in summer (0.32 m/s) under the SSP2 scenario. Under the SSP5 scenario, the highest increase was observed in winter (0.43 m/s) and the lowest in summer (0.37 m/s). The annual average for CMIP5 models showed a decrease in wind speed at all stations compared to the baseline period, particularly at Khash and Zabul stations. In CMIP6, all stations except Chabahar exhibited increased wind speeds, with Chabahar recording the highest average wind speed and other stations showing minimal differences. The results indicate varying model performance in simulating climate variables, with the historical wind speed uncertainty in CMIP5 models potentially attributed to differences in grid resolution, atmospheric components, and convection scheme parameterization.

Conclusion

Given the observed biases in the models, future research should involve a comprehensive study utilizing additional models from the CMIP6 and CMIP5 families. These findings are significant for assessing the potential of the wind energy sector in Sistan and Baluchestan, a region known for its wind resources, which may inform future development strategies. It is also recommended that similar assessments be conducted in other regions of Iran to determine whether identified sites with suitable wind power may experience future resource fluctuations. Also, it is suggested that different methods of bias correction and downscaling should be investigated and the best method should be suggested. On the other hand, using satellite data instead of observational data and comparing their results can be considered as another research proposal.



Key Words:Downscaling, Wind speed, Sistan and Balochestan, CMIP models



Article Type: Research Article

Acknowledgement

We express our sincere gratitude to the University of Zanjan for their financial and logistical support throughout this research project, identified by code 1174-2-1402.

Conflicts of Interest

The authors declare no conflicts of interest regarding the authorship or publication of this article.

Data Availability Statement

Datasets are available upon reasonable request to the corresponding author.

Authors’ Contribution

Author 1: Formal analysis and investigation, Software

Author 2: Writing and manuscript editing

Keywords

Main Subjects


منابع
خواجه‌امیری، چکاوک، خسروی، محمود، طاوسی، تقی، حمیدیان‌پور، محسن، و کیانی‌مقدم، منصور (1401). صحت‌سنجی عملکرد برونداد مدل اقلیمی CMIP6 با داده‌های مشاهداتی کرانه‌های مکران. هواشناسی و علوم جو، 5 (1)، 22-41. doi:10.22034/jmas.2023.379448.1193
روشن، غلامرضا، قنقرمه، عبدالعظیم، و شاهکوئی، اسماعیل (1393). ارزیابی پتانسیل تولید انرژی بادی در ایستگاه‌های منتخب ایران. برنامه‌ریزی منطقه‌ای، 4 (14)، 13-30.
کهخامقدم، پریسا، و دلبری، معصومه (1396). ارزیابی امکان بهره‌گیری از انرژی باد در استان سیستان و بلوچستان. پژوهش‌های جغرافیای طبیعی، 49 (3)، 441-455.
فرزانه، مهسا، ملبوسی، شراره، و حمیدیان‌پور، محسن (1401). پیش‌نگری متغییرهای اقلیمی استان سیستان و بلوچستان تحت سناریوهای واداشت تابشی RCP. پژوهش‌های اقلیم شناسی، 13 (51)، 129-148. doi: 10.30495/sarzamin.2023.22861
 
References
Alizadeh Choobari, O., Zawar-Reza, P., Sturman, A., (2013). Low level jet intensification by mineral dust aerosols. Ann. Geophys. 31, 625–632. doi:10.5194/angeo-31-625-2013.
Alizadeh-Choobari, O., Zawar-Reza, P., & Sturman, A. (2014). The “wind of 120 days” and dust storm activity over the Sistan Basin. Atmospheric Research, 143, 328-341. doi: 10.1016/j.atmosres.2014.02.004.
Carta, JA., Ramirez, P., & Velazquez, S. (2009). Are view of wind speed probability distributions used in wind energy analysis: case studies in the Canary Islands. Renew Sustain Energy Rev, 13, 933–55.  doi: 10.1016/j.rser.2008.05.005
Carvalho A., Rocha X., Costoya M., deCastro M (2021). Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6 D. Renewable and Sustainable Energy Reviews 151:111594.
Carvalho, A., Rocha, X., Costoya, M., & deCastro, M. G. (2021). Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renewable and Sustainable Energy Reviews, 151, 111594.  doi: 10.1016/j.rser.2021.111594
Carvalho, D. C., Rocha A., Gomez-Gesteira, M., & Silva Santos, C. (2017). Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections. Renew Energy, 101, 29–40 .doi: 10.1016/j.renene.2016.08.036
Chaturvedi, R. K. J., Joshi, M., Jayaraman, G., Bala, & Ravindranath, N. H. (2012). Multi-Model Climate Change Projections for India under. Representative Concentration Pathways, Current Science, 103, 791-802. doi: 10.1016/j.agwat.2024.108673.
Chen, HP., & Sun, JQ. (2015). Assessing model performance of climate extremes in China: An intercomparison between CMIP5 and CMIP3. Climatic Change, 129(1-2), 197–211. doi:10.1029/2005JD006290
Chen, L. (2020). Impacts of climate change on wind resources over North America based on NA-CORDEX. Renew Energy, 135, 1428 – 38. doi: 10.1016/j.renene.2020.02.090
Christopher, J., Schindler, D. (2019). Climate Changing wind speed distributions under future global Energy. Conversion and Management, 198, 111841.  doi: 10.1016/j.enconman.2019.111841.
Costoya, X., deCastro, M., & Carvalho, D. G ´. (2020). On the suitability of offshore wind energy resource in the United States of America for the 21st century. Appl Energy, 262, 114537. doi: 10.1016/j.apenergy.2020.114537.
Eyring, V., Bony, S., & Meehl, G. A. (2016). Overview of the Coupled Model Intercomparison Project Phase6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–58. doi:10.5194/gmd-9-1937-2016.
Fadaei, D., (2007): The feasibility of manufacturing wind turbines in Iran, Renewable and Sustainable Energy Reviews, Vol.11, PP.536–542. doi: 10.1016/j.rser.2005.01.012.
Farzaneh M., Malbosi Sh., Hamidian Poor M (2022). Prediction of climate variable in Sistan and Baluchestan province under RCPs senarios. Climatology Research. 13 (51): 129-148. doi: 10.30495/sarzamin.2023.22861 [In Persian]
Gao, J., Sheshukov, A.Y., Yen, H., Douglas-Mankin, K.R., White, M.J., & Arnold, J.G. (2019). Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources. Journal of Hydrology . 568, 551–561. doi: 10.1016/j.jhydrol.2018.10.041
Grose, M. R., Narsey, S., Delage, F. P., Dowdy, A.J., Bador, M., Boschat, G., Chung, C., Kajtar, J.B., Rauniyar, S., Freund, M.B., Lyu, K., Rashid, H., Zhang, X., Wales, S., Trenham, C., Holbrook, N.J., Cowan, T., Alexander, L., Arblaster, J. M., & Power, S. )2020(. Insights from CMIP6 for Australia’ s Future climate. Earth’ s Fut, 8. doi:10.1029/2019EF001469.
Gusaina, S., & Ghoshb, S. (2020). Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Karmakar Atmospheric Research, 232, 104680.
Hamed, M. M., Nashwan, M. S., & Shahid, S. b. (2021). Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. Climatol. 41, 5431–5446. doi: 10.1002/joc.7286
Hamed, M., Salem Nashwan, M., & Shahid, Sh. (2022). In consistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Tarmizi Atmospheric Research, 265, 105927. doi: 10.1016/j.atmosres.2021.105927
Hung, M. J. L., Lin, W., Wang, D., Kim, T., Shinoda, & Weaver. S. (2013). MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models. Journal of Climate, 26, 6185-6214. doi:10.1175/JCLI-D-12-00541.1
Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., Ziarh, G.F., Chung, E.-S., & Wang, X. (2021). Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos Res, 254, 639-105525. doi: 10.1016/j.atmosres.2021.105525
Jung, C., & Schindler, D. (2018). 3D statistical mapping of Germany’s wind resource using WSWS. Energy Convers Manage, 159, 96–108. doi:10.1016/j.enconman.2017.12.095
Kamranzad, B. (2019). Nobuhito Mori Future wind and wave climate projections in the Indian Ocean based on a super high‑resolution MRI‑AGCM3.2S model projection. Climate Dynamics, 53:2391–2410.  doi:10.1007/s00382-019-04861-7.
Kamranzad, B., & Mori, N. (2019). Future wind and wave climate projections in the Indian Ocean based on a super-high-resolution MRI-AGCM3.2S model projection. Clim Dyn, 53(3–4), 2391–2410. doi:10.1007/s00382-019-04861-7.
Khaje Amiri Khaledi, Ch; Khosravi, M.; Taosi, T. (2022). Validation of CMIP6 climate model output performance with observational data of Makran coast. Meteorology and Atmospheric Sciences, 5 (1)1, 22-41. doi: 10.22034/jmas.2023.379448.1193 [In Persian]
Krishnan, A., & Bhaskaran, P. (2020). Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Climate Dynamics, 55, 2667–2687. doi: 10.1007/s00382-020-05406-.
Kulkarni, S., & Huang, H. P. (2014). Changes in surface wind speed over North America from CMIP5 model projections and implications for wind energy. Adv Meteorol, 292763. doi: 10.1155/2014/292768
Lima, DCA., Soares, PMM., Cardoso, RM., Semedo, A., Cabos, W., & Sein, DV. (2021). The present and future offshore wind resource in the Southwestern African region. Clim Dynam, 56, 1371 – 88. doi: 10.1175/2010BAMS2946.1
Lun, Y., Liu, L., Cheng, L., Li. X., Li. H., & Xu. Z. (2021). Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. nternational Journal of Climatology, 41, 3994 – 4018. doi: 10.1002/joc.7055.
Martinez, G., & Iglesias, A. (2021). Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energy Conversion and Management, 234, 11396. doi: 10.1016/j.enconman.2021.113961.
Moghadam, P., Delbari, M. (2016). Evaluating the possibility of using wind energy in Sistan and Baluchestan province. Natural Geography Research, 49 (3), 441-455. [In Persian]
Monerie, P.A., Sanchez-Gomez, E., Pohl, B., Robson, J., Dong, B., 2017. Impact of internal variability on projections of Sahel precipitation change. Environ. Res. Lett. 12 114003. doi: 10.1016/j.ifacol.2017.07.155.
Monerie, P.A., Wainwright, C.M., Sidibe, M., Akinsanola, A.A., 2020. Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Clim. Dyn. 55 (5-6), 1385-1401. doi: 10.1016/j.agwat.2020.108673.
Muthige, M. S. (2018). Projected changes in tropical cyclones over the South West Indian Ocean under different extents of global warming Environ. Re, Lett. 13 065019. doi: 10.1088/1748-9326/aabc60.
O’Neill, BC., Tebaldi, C., van, Vuuren D. P., et al. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–82. doi: 10.5194/gmd-9-3461-2016.
Ouarda TBMJ, Charron C, Shin J-Y, Marpu PR, Al-Mandoos AH, Al-Tamimi MH, et al. (2020). Probability distributions of wind speed in the UAE. Energy Convers Manage.93:414–34. doi: 10.1016/j.wace.2020.100303
Pryor, S. C., & Barthelmie, R. J. (2010). Climate change impacts on wind energy: a review. Renew Sustain Energy Re, 14(1), 430 – 7. doi: 10.1016/j.rser.2009.07.028
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E., (2009 b). AquaCrop the FAO crop model to simulate yield response to water: II: main algorithms and software description. Agronomy Journal, 101, 438–447. doi: 10.2134/agronj2008.0140s.
Reyers, M., Moemken, J., & Pinto, J. G. (2016). Future changes of wind energy potentials over Europe in a large CMIP5 multi model ensemble. nternational Journal of Climatology, 36(2),783 – 96. doi: 10.1002/joc.4382.
Roshan Gh.R., Qanqormeh, Gh., & Shahkoui, A. (2014). Evaluation of wind energy production potential in selected stations of Iran. Regional Planning, 4 (14), 13-30. [In Persian]
Sansom, P.G., Stephenson, D.B., Ferro, C.A., Zappa, G., & Shaffrey, L. (2013). Simple uncertainty frameworks for selecting weighting schemes and interpreting multimodel ensemble climate change experiments. J. Clim. 26 (12), 4017–4037. doi: 10.1175/JCLI-D-12-00462.1
Soares, PM., Lima, D., Semedo, A., Cabos, W., & Sein, D. V. (2019). Climate change impact on Northwestern African offshore wind energy resources. Environ Res Lett, 14, 124065. doi: 10.1088/1748-9326/ab5731
Song, Y.H., Chung, E.-S., & Shahid, S. a. (2021). Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models. nternational Journal of Climatology. 41, 13, 5899-5919. doi: 10.1002/joc.7159
Taylor KE. (2012). Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos; 106:7183–92.  doi: 10.1007/978-3-030-29639-1_2.
Vara Prasad, P., Allen Jr, L., & Boote, K. (2005). Crop responses to elevated carbon dioxide and interaction with temperature: grain legumesJournal of Crop Improvement, 13, 113155.  doi: 10.1016/j.atmosres.2019.104680
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., et al. (2019). Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv. Model Earth Syst, 11, 2177–2213. doi: 10.1029/2019ms001683.
Weigel, A.P., Knutti, R., Liniger, M. A., & Appenzeller, C. (2010). Risks of model weighting in multimodel climate projections. J. Clim. 23, 4175–4191. doi: 10.1175/ 2010JCLI3594.1.
Yanlin Yue, a., Dan Yan, b. c., Qun Yue, a., Guangxing Ji, d., & Zheng Wang, a, e. (2021). Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmospheric Research, 264, 105828. doi: 10.1016/j.atmosres.2021.105828.