Evaluation of Actual Evapotranspiration Estimations of GLEAM Model and GRACE Satellite in the Gharehsu-Gorganrud basin

Document Type : Research/Original/Regular Article

Authors

Department of Irrigation and Reclamation Engineering, College of Agriculture, University of Tehran, Karaj, Iran

Abstract

Introduction

Improving water efficiency in agriculture especially in the face of global warming, requires an accurate of evapotranspiration. The Gharehsu-Gorganrud Watershed with a complex topography is located in Golestan province,north of Iran. Remote sensing methods can provide acceptable estimation of ET in larfe areas with inadequate ground observations. However, these methods have lower accuracy compared to ground-based techniques and require regional validation using water balance or lysimeter approaches. Selecting suitable satellite datasets for water management planning in a specific study area is a fundamental challenge that needs validation through physical methods and ground data. Previous studies show that the GLEAM model wwhich is based on satellite data provides reliable outputs for the Karkheh basin, west of Iran and can be used as an alternative to empirical and conventional methods for estimating crop water requirements. Gharekhani et al. (2020) investigated the uncertainty of actual evapotranspiration in the Gharehsu-Gorganrud basin using two climate databases and a remote sensing-based model. The study demonstrated that the ERA-Interim, GLEAM, and ETPT-JPL databases performed well in reducing uncertainty. Another study by Hafezparast et al. (2022) utilized GRACE satellite data to monitor changes in groundwater levels in the Mianrahān aquifer, revealing critical conditions in some aquifers.Overall, the research aimed to investigate the uncertainty in actual evapotranspiration estimates using GRACE satellite data and climate databases in the Gharehsu-Gorganrud Basin.

Materials and Methods

The study area is Gharehsu-Gorganrud basin which is a sub- basin of the main Caspian Sea Basin..The meteorological data used in this study were collected from synoptic stations of Iran meteorological organization. These data included average, minimum and maximum temperature, relative humidity, precipitation, wind speed, and total sunshine hours. The satellite-derived data provides estimates of actual evapotranspiration, as key variable for this study. However, to compare these estimates with the Penman-Monteith equation (FAO 56 PM) and determine the potential evapotranspiration, we need to consider the vegetation cover factor specific to the study crop of wheat. Hence, remote sensing techniques was employed to retrieve and acquire satellite images exclusively for the wheat fields, allowing us to accurately calculate the potential evapotranspiration by multiplying the actual evapotranspiration by the corresponding vegetation cover factor.The Global Land Evaporation Amsterdam Model (GLEAM) is an algorithm that estimates various components of evaporation and transpiration using satellite observations. The model outputs include potential evaporation, root zone soil moisture, surface soil moisture, and evaporative stress.This model utilizes solar radiation and temperature data to calculate potential evapotranspiration and multiplies it by the evaporative stress to obtain actual evaporation. The data is available on a daily, monthly, and yearly basis,and the grids are divided into 0.25-degree geographical resolution.GRACE satellite data is obtained from the GRACE spacecraft,measuring changes in Earth's gravity field due to water variations. These data, along with ground-based information like precipitation and runoff, enable the calculation of actual evapotranspiration. By assuming a water balance for a specific watershed and utilizing variables such as precipitation, runoff, and ΔS from GRACE, actual evapotranspiration can be determined.

Results and Discussion

Based on the comparisons, the best performance GLEAM model was obtained in Rezvan station, with an elevation of 1447 meters, dominant agricultural land use pattern, with statistical metrics of RMSE=0.32, MAE=0.30, R2 of 0.78, and MAPE =13.67.The lowest agreement was related to the "Kalaleh" station, with an elevation of 127 meters, non-agricultural land use pattern, and statistical indices of RMSE =0.77, MAE =0.60, R2=0.49, and MAPE =18.05. Overall, the results indicate that estimating evapotranspiration using the Penman-Monteith FAO equation performs better in high-elevation areas with agricultural land use patterns, while it yields less reliable results in low-elevation areas with non-agricultural land use patterns. The study by Gharekhani et al. (2020) also showed that the GLEAM model exhibits less uncertainty at elevations between 1400 and 1800 meters above sea level and in areas with agricultural land use patterns. For more precise explanations, further examination of the environment and comparison with field data is required. Based on the conducted comparisons, the best GRACE performance is associated with the "Rezvan" station, which has a drier climate compared to other stations, and statistical indices of 0.41 RMSE,0.38 MAE, 0.66 R2, and 17.46 MAPE. The worst performance is related to the "Kalaleh" station, with an elevation of 127 meters, non-agricultural land use pattern, and statistical indices of 0.91 RMSE, 0.77 MAE,0.45 R2, and 23.17 MAPE.



Conclusions

The use of satellite imagery can provide broader insights into various topics. In this study, the estimation of actual evapotranspiration was conducted using GRACE satellite data and the GLEAM model in the Gharehsu-Gorganrud region of Golestan province. The FAO Penman-Monteith equation was employed for evapotranspiration calculation. The results indicated that the best estimations belongs to Rezvan station, while the worste case performance was observed in Kalaleh station in estimating evapotranspiration based on the FAO Penman-Monteith equation measure and GLEAM data.More precise informatin on land cover maps in the region for ET estimation using vegetation cover dependent coefficents is necessary.

Keywords

Main Subjects


منابع
پیرمون، امیرحسین.، قهرمان، نوذر و قمقامی، مهدی (1402). مقایسه برآوردهای تبخیرتعرق حاصل از ماهواره SENTINEL-2 با معادله پنمن مانتیث در حوضه گرگان رود-قره‌سو. آبیاری و زهکشی ایران، 17(6)، 1053-1062.
حافظ پرست، مریم (1401). پایش سطح آب زیرزمینی با استفاده از ماهوارة GRACE و GLDAS در استان کرمانشاه. نشریة علمی پژوهشی مهندسی آبیاری و آب ایران، 12(4)، 234-257. doi: 10.22125/iwe.2022.150736.
ستاری، محمدتقی.، احمدی‌فر، وحدت.، و پاشاپور خلف انصار، رسول. (1393). مدل‌سازی تلفات تبخیر از مخزن سد علویان با استفاده از مدل درختی M5 و مقایسه آن با روش‌های تجربی. مهندسی آبیاری و آب ایران، 5(1), 107-121.
شرکت مهندسی مشاور جاماب (۱۳۸۷). گزارش مطالعات حوزه آبخیز گرگانرود.
طالبی، حامد، صمدیان‌فرد، سعید، و ولیزاده کامران، خلیل (1402). روش جدید مبتنی بر تصاویر ماهواره لندست 8 و سنجنده مادیس برای تخمین تبخیر و تعرق مرجع ماهانه در دو اقلیم خشک و نیمه‌خشک. مدل‌سازی و مدیریت آب و خاک، 3(3)، 180-195. doi: 10.22098/mmws.2023.12048.1198
عبدی دزفولی، امین، قهرمان، نوذر، و قمقامی، مهدی (1399). ارزیابی برآوردهای تبخیر-تعرق ,واقعی مدل جهانی (GLEAM) در شمال حوضه کرخه. آبیاری و زهکشی ایران، 14(2)، 366-378. dor: 20.1001.1.20087942.1399.14.2.2.7.
عنابی میلانی، اژدر، و نیشابوری، محمدرضا (1397). مقایسه برخی روابط تجربی برآورد تبخیر-تعرق مرجع برای دشت تبریز با استفاده از لایسیمتر و ارائه مدلی برای تعیین آن از روی داده‌های هواشناسی. دانش آب و خاک، 28(1)، 41-54.
فرجی، زهره، کاویانی، عباس، و اشرف‌زاده، افشین (1396). ارزیابی داده‌های ماهوارة GRACE در برآورد سطح آب زیرزمینی در استان قزوین. مجلة اکوهیدرولوژی، 4(2)، 463-476. doi: 10.22059/ije.2017.61482.
قره‌خانی، ابوذر، قهرمان، نوذر، و ایران‌نژاد، پرویز (1399). تحلیل عدم قطعیت برآوردهای ماهواره‌ای و مبتنی بر پایگاه داده‌های اقلیمی تبخیر-تعرق واقعی (مطالعه موردی: حوضة کرخه). تحقیقات آب و خاک ایران. 51(5)، 1177-1193. doi: 10.22059/ijswr.2020.293401.668413.
مرشدی، علی (1402). برآورد تبخیر و تعرق واقعی و نیاز آبی گل‌محمدی (.Rosa damascena Mill) با استفاده از الگوریتم سبال. مدل‌سازی و مدیریت آب و خاک، 3(3)، 20-36.
 doi: 10.22098/mmws.2022.11400.1127.
 
References
Abdidezfuli, A., Ghahreman, N., and Ghamghami, M. (2020). Evaluation of evapotranspiration estimations of GLEAM model in northern part of Karkhe basin. Iranian Journal of Irrigation & Drainage, 14(2), 366-378.
dor: 20.1001.1.20087942.1399.14.2.2.7 [in Persian].
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). FAO Irrigation and drainage paper No. 56. Food and Agriculture Organization of the United Nations. p.17.
Chao, L., Zhang, K., Wang, J., Feng, J., and Zhang, M. (2021). A comprehensive evaluation of five evapotranspiration datasets based on ground and GRACE satellite observations: implications for improvement of evapotranspiration retrieval algorithm. remote sensing, 13(12), 2414. doi: 10.3390/rs13122414
Chicco, D., Warrens, MJ and Jurman G. 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput Sci. Jul 5;7: e623. doi: 10.7717/peerj-cs.623
Faraji, Z., Kaviani, A., and Ashrafzadeh, A. (2017). Assessment of GRACE satellite data for estimating the groundwater level changes in Qazvin province. Iranian journal of Ecohydrology, 4(2), 463-476. doi: 10.22059/ije.2017.61482. [in persian]
Gharehkhani, A., Ghahreman, N., and Irannejad, P. (2020). Uncertainty Analysis of Actual Evapotranspiration estimations using satellite data and climate databases (Case study: Karkheh basin). Iranian Journal of Soil and Water Research, 51(5), 1177-1193.
 doi: 10.22059/ijswr.2020.293401.668413. [in persian]
Hafezparast, M. (2022). Monitoring of groundwater level changes using GRACE and GLDAS satellites in Kermanshah province. Irrigation and Water Engineering, 12(4), 234-257.
 doi: 10.22125/iwe.2022.150736. [in Persian]
Jamab Consulting Engineering Co. (2008). Gorganrood watershed. [in persian]
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, doi: 10.5194/gmd-10-1903-2017, 2017.
Mo, X., Wu, J. J., Wang, Q., and Zhou, H. (2016) Variations in water storage in China over recent decades from GRACE observations and GLDAS, Nat. Hazards Earth Syst. Sci., 16, 469–482, doi: 10.5194/nhess-16-469-2016.
Morshedi, A. (2023). Estimation of actual evapotranspiration and water requirement of rose (Rosa damascena Mill.) using SEBAL algorithm. Water and Soil Management and Modelling, 3(3), 20-36.
 doi: 10.22098/mmws.2022.11400.1127. [in persian]
Onnabi-Milani, A., and Neyshabouri, M. (2018). Comparison of some empirical estimating methods of reference evapotranspiration in Tabriz Plain using lysimeter and proposing a model for its determination from climatic data. Water and Soil Science, 28(1), 41-54. [in persian]
Pascolini‐Campbell, M., Reager, J., and Fisher, J. (2020). GRACE‐based mass conservation as a validation target for basin‐scale evapotranspiration in the contiguous United States. Water Resources Research, 56.
     doi: 10.1029/2019WR026594.
Pirmoon, A., Ghahreman, N., & Ghamghami, M. (2023). Comparison of evapotranspiration estimations of SENTINEL-2 Satellite and Penman-Monteith equation in Gorganrood-Gharehsoo basin. Iranian Journal of Irrigation & Drainage. [in persian]
Sattari, M. T., Ahmadifar, V., and Pashapour Kholf Ansar, R. (2014). M5 Tree model-based modeling of evaporation losses in eleviyan reservoir and comparison with empirical equations. Irrigation and Water Engineering, 5(1), 107-121. [in persian]
Sun, M., Dong, Q., Jiao, M., Zhao, X., Gao, X., Wu, P., and Wang, A. (2018). Estimation of actual evapotranspiration in a semiarid region based on GRACE Gravity satellite data—A case study in Loess Plateau. Remote Sensing, 10(12), 2032.
      doi: 10.3390/rs10122032.
Talebi, H., Samadianfard, S., & Valizadeh Kamran, K. (2023). A novel method based on Landsat 8 and MODIS satellite images to estimate monthly reference evapotranspiration in arid and semi-arid climates. Water and Soil Management and Modelling, 3(3), 180-195. doi: 10.22098/mmws.2023.12048.1198. [in persian]